

ATMOSPHERIC EFFECTS and the ULTIMATE RANGING ACCURACY for LUNAR LASER RANGING

Professor Douglas Currie

University of Maryland, College Park, MD, USA NASA Lunar Science Institute, Moffett Field, CA INFN – LNF, Laboratori Nazionali di Frascati, Italy

CURRENT SCIENCE ISSUE

- Open Questions in Cosmology and Fundamental Physics
 - Nature of Dark Matter
 - Gravitational Observations are the Only Clue to Date
 - Addressed by the MOND Theories
 - However, For Now I will Leave This to the Particle Talks
 - Nature of Dark Energy
 - SuperNova Discoveries of Acceleration of Distant Galaxies
 - This could be Explained by Einstein' Lambda Constant
 - Or Spatial and/or Temporal Changes in Lambda Quintessence
 - Relation between GR and Quantum Mechanics
 - Attempts toward the Quantization of Gravity
 - String Theory implies Variation of Fundamental Constants

GRAVITATIONAL & GR SCIENCE

- LLR Currently Provides our Best Tests of:
 - Strong Equivalence Principle (SEP) 15
 - Time Rate-of-Change of G
 - Inverse Square Law, Deviation of 1/r 56
 - The Weak Equivalence Principle (WEP)
 - Gravitomagnetism
 - ALLRP Improvement by XX over Current by 2030

19th International Workshop on Laser Ranging 27-31 October 2014 Annapolis, MD 47

CHALLENGES FOR ALLRP

- To Achieve mm and/or sub-mm LLR Accuracy
 For an Order of Magnitude Improvement in Science
- A) Deploy Three LLRRA-21s on the Moon
- B) Analyze Upgrade Paths for Current L & S GSs
- C) Improve GS Hardware, Software and Ops
- D) Upgrade Analysis and Scientific Software
- E) Geophysical Effects Ocean Tides, Rainfall, etc.
- F) Understanding the Earth's Atmosphere

ATMOSPHERIC EFFECTS

- No Comprehensive Data for Combined Effects
- Discussion will Divide into Two Domains

 Short Term Local "High Frequency" Effects
 Long term Large Scale "Slow", 'Biases"

Pavlis

OUTLINE

Simulations

- Short Term Effects Achieving Good Normal Points
 - Computations of Turbulence using GLAD
- Long Term Effects Biases
 - Estimates of the Magnitude of the Horizontal Gradients
- Satellite Observations
 - Short Term
 - Satellite Ranging Observations of EVISAT
 - Long Term
 - Satellite Ranging Observations of LAGEOS

LUNAR vs. SLR SCIENCE

SLR Science Observations

- SLR Science Needs Data Down to 10° Elevation
- Domain for Most Analysis of Atmospheric Effects
- Lunar Science Observations
 - Gravitation and General Relativity Tests
 - Rotational Properties of the Moon
 - Given Locations of Current Lunar Laser Ranging GS
 - Observations Conducted between 40° and 30° Elevation

SHORT TERM EFFECTS Simulations

- Shot-to-Shot Variation in Timing of Delay
- Limits Precision of Mean Value of Normal Point – For a Given Number of Shots
- Theoretical Estimate of Delay using GLAD
 - Ground to LEO Satellite -
 - 40° Elevation
 - Hufnagfel-Valley
 - $C_n^2 = 10^{-13}$ $L_o = 100m$
 - RMS of 0.4 mm Shot to Shot

LONG TERM EFFECTS

- Excellent Accuracy for Zenith Observations
- Zenith Observations Never Possible for Moon
- Almost All Observations at 40° or 30° Elevation
 Need to Compute Off-Zenith Effects
- Could Assume Spherically Symmetric Atmosphere

 But Horizontal Gradients in Pressure, Temperature & H
 Heat Island, Weather Effects, Wind on Topology

Need to Evaluate Magnitude of These Effects

LONG TERM EFFECTS Simulations

- Martini & Mendes
 - Spherically Symmetric Atmosphere
 - RMS Of Day to Day Estimates of Bias
 - 4.9 mm at 10° 0.7 mm at 40°
- Gardner
 - Radiosondes for Horizontal Gradients
 - RMS Of Day to Day Estimates of Bias
 - 8.7 mm at 10° 2.4 mm at 40°

LONG TERM EFFECTS Simulations

- Hulley and Pavlis AIRS
 - Satellite Estimation of Horizontal Gradients
 - Ground Resolution ~ 50 km
 - RMS Of Day to Day Estimates of Bias
- Hulley and Pavlis Weather NCEP

 Surface Estimates of Horizontal Gradients
 RMS Of Day to Day Estimates of Bias
 Ground Resolution ~250 km

MAGNITUDE OF PREDICTIONS Hulley and Pavlis

			N-S Gradient				E-W Gradient			
•	Station	Metho	bd							
•			mean	r.m.s	mean	r.m.s	mean	r.m.s	mean r	.m.s
•			10°	10°	40°	40°	10°	10°	40°	40°
•			mm	mm	mm	mm	mm	mm	mm	mm
•										
•	McDonald	ART	+0.6	+7.0	+0.2	+1.9	-2.7	+6.0	+0.7	+1.6
•	Fort Davis,	NRT	-0.2	+0.6	+0.0	+0.1	-1.0	+3.1	+0.3	+0.8
•										
•	MLRO	ART	-2.1	+4.5	+0.5	+0.4	+1.8	+4.7	+0.5	+1.3
•	Materia,	NRT	-0.5	+8.4	+0.1	+0.8	-0.4	+7.5	+0.1	+2.0

 Average r.m.s. at 10°/40° for both stations and for both computations 7.5/2.0 mm 19th International Workshop on Laser Ranging 27-31 October 2014

Annapolis, MD

SHORT TERM EFFECTS Observations

- Ranging Experiments at GRAZ Observatory

 Conducted Ranging to EVISAT Satellite
 Need to Remove Instrumental Effects
- Ground to LEO Satellite 36.6° Elevation
 Observed RMS Shot to Shot Variation 0.40 mm

LONG TERM EFFECTS Observations

- Detailed Comparison
 - Between Computed Results with Observations
 - Thus for Each Day This Difference between
 - Laser Ranging and Ray Trace with Horizontal Gradients
 - Analysis Performed By Hulley & Pavlis
 - -LAGEOSI&II
 - Analysis of Two Years of Ranging Observations

5 mm at 10° – 1.35 mm at 40° – 1.74 mm at 30°

SUMMARY

 Short Term – Shot to Shot Variation in a NP Simulation in GLAD at 40° • 0.4 mm for $L_0 = 100$ m Observation at GRAZ at 36.6° 0.4 mm at 36.6° elevation Long Term – Bias of a Normal Point Simulation with ARIS and NCEP – Day to Day • 7.2 mm at 10° – 2.00 mm at 40° – 2.50 mm at 30° - Observation with LAGEOS vs. Simulation 5 mm at 10° – 1.35 mm at 40° – 1.47 mm at 30° • **19th** International Workshop on Laser Ranging 27-31 October 2014

Annapolis, MD

FUTURE DIRECTIONS

- Obtain Existing Analysis Results of Biases
 - E.g., Like Hulley and Pavlis at 10°
 - Integrate This into the Current Analysis Structure
- Investigate Better Weather Models
 - Inclusion of Local Topology and Cloud Patterns
 - 1 km resolution (at least for the lower atmosphere)
 - NCEP -> WRF World Research and Forecasting System
- Rework Short Term GLAD Analyses
 - Address the Detailed Parameters of Existing Lunar Stations
- Investigate Better Measurement Systems for Turbulence
 - E.g., Advanced DIMM Systems

Thank You! any Questions? or Comments?

with **Special Acknowledgements** to NASA Lunar Science Sorties Opportunities **NASA Lunar Science Institute Italian Space Agency** INFN-LNF, Frascati LSSO Team & LUNAR Team **Douglas Currie** currie@umd.edu 301 412 2033 18