

OPEN JOINT-STOCK COMPANY «RESEARCH-AND-PRODUCTION CORPORATION "PRECISION SYSTEMS AND INSTRUMENTS»

New ideas in retroreflector arrays development

V.P.Vasiliev, M.A.Sadovnikov, V.D. Shargorodskiy, A.L.Sokolov

USA, 2014

New laser retroreflector array

- 1. LEO array "PIRAMIDA"
- 2. "BLITS-M"
- 3. Ring retroreflector array for GLONASS
- 4. Luna's arrays

Cross-section of "Piramida"

Target error

Retroreflector arrays comparison

Retroreflector array	Number of CCR	Mass	Size	Target error
Champ	4	210 g	110x110x48 mm	± 5 mm
CryoSat-2	7	300 g	Ø114x50 mm	±6mm
Piramida	4	30 g	40x40x30 mm	> ± 1 mm

Conclusions

- Construction of the compact retroreflector system allows to reduce the measurement error of the range to a satellite up to 1 mm;
- RCS is in the following limits: from 3,2·10⁵ m² up to 4·10⁴ m² at the elevation angle of 20° and from 1,2·10⁴ μ² up to 5·10³ μ² in the zenith area at the elevation angle 80°
- Piramida will be set to student's spacecraft «Baumanets-2»:

Spherical glass satellite «BLITS»

SC «Meteor-M» with spherical glass nanosatellite «BLITS» on board was launched on September 21, 2009. ILRS announced its support to the «BLITS» orbit. Basic parameters:

170 mm
7.5 kg
835 km
100000 m ²
< 100 micrometers

Spherical satellite «BLITS» in details

Construction of SC «BLITS-M»

Interference reflective coating

Inner sphere radius R_2	64 mm
Inner sphere material	TF105
Outer radius R_1	110,4 mm
Outer lenses material	K108
Mass	17 kg
Ballistic coefficient	440 kg/m2
Altitude	2000 km
CS	$(2\div3)\cdot10^6 \text{ m}^2$

8

Orbital plane is parallel to the direction to the Sun

Temperature distribution depending on SC size and thermal deformation for orbit №1. a – before entering the Earth's shadow, b – before leaving it.

Orbital plane is perpendicular to the direction to the Sun

Temperature distribution depending on SC size and thermal deformation for orbit No2

CS at the FFDP axis is equal to $(2 \div 3) \cdot 10^6 \text{ m}^2$

Concept of the SC «BLITS-S» construction

Requirement	Solution	Implementation
Zero signature	Always reflects just one CCR	60 CCR. Maximum angle of incidence –
		14°, aperture – 24 mm and blend altitude –
		20 mm.
Increasing of CS	CCR size and faces coverage	CCR with a phase-correcting coating of
	optimization	lateral faces for the FFDP formation
		without a central lobe.
Absence of the "dead"	Selecting both optimal angle	Angular distance between any neighboring
zones where none of	between neighboring CCRs	CCRs is approximately equal to the
the CCR reflects	and maximum angle of	double angle of incidence.
	incidence	
Minimal variation of a	Reduction of the sphere's	Sphere's diameter by the entering faces of
systematic correction	diameter. Reduction of the	CCR is equal to 168 mm and the carrier
	maximum angle of incidence	sphere's diameter – 210 mm.
	to CCR at the expense of	
	blends	
Increasing of ballistic	Increase of the carrier sphere's	For a heavy flint (TF5) the mass
coefficient (BC)	diameter and its material	is equal to 18 kg,
	density	And BC is equal to 550 kg/m^2 .

CCRs arrangement on SC «WESTPAC»

This is an icosahedron. 3 CCR x 20 faces = 60 CCR.

14

Construction of SC «BLITS-S»

Comparison of SC «BLITS», «BLITS -M» and «BLITS-S»

Characteristi	С	«BLITS»	«BLITS-M»	«BLITS-S»
Diameter		170, 3 mm	220,8 mm	210 mm
Mass		7,46 kg	17 kg	18 kg
Ballistic coefficie	ent	327 kg/m ²	435 kg/m ²	550 kg/m ²
Target error		0,1 – 0,3 mm	0,1 – 0,3 mm	0,6 – 1 mm
Signature		«zero»	«zero»	Minor extension of a signal
RP type		Central lobe with a ring- shaped minor-lobe	Central lobe with a ring- shaped minor lobe	Six minor lobes
RCS for 7 – 8 ang. sec	С.	$(0,1 \div 0,2) \cdot 10^6 \text{ m}^2$	$(0,5 \div 0,8) \cdot 10^6 \text{ m}^2$	$(1,0 \div 1,4) \cdot 10^6 \text{ m}^2$
Signal type at angular velocity 10 turns/minu	the y of ite	Clusters with the interval of 3 seconds	Clusters with the interval of 3 seconds	Sawtooth signal with the period of 0.5 seconds

The ring retroreflector array for GLONASS

Basic ideas:

- 1. Increased aperture CCRs: 42 48 mm
- 2. DAO: 2" 3" (single DA)
- 3. Interference dielectric coatings for reducing of solar heating influence
- 4. Orientations of two-spot FFDP along the radius of RRA

Optimization of LR-array configuration

CCRs with DAO + coatings. Diameter 48 mm. Dihedral angle 2,4"

Standard deviation

	$\theta = 5^{\circ}$	$\theta = 10^{\circ}$	$\theta = 15^{o}$
50 ps	8 mm	8 mm	8 mm
100 ps	16 mm	16 mm	16 mm

Incident pulse

 $2\tau = 50 \text{ ps}$

 $2\tau = 100 \text{ ps}$

Variants of Luna's arrays

Base characteristics:

- 1. Standard CCRs: 28 mm; DAO: 0.
- 2. Interference dielectric coatings.
- 3. Compact array of 19 CCR.
- 4. Size = 160 mm. Mass < 1 kg.

- 1. CCRs: 42 48 mm; DAO: 0.
 - 2. Interference dielectric coatings.
 - **3. Non-planar** array of 11 13 CCR.
 - 4. Size = 310 mm. Mass < 2 kg.

$$CS = (2,3-2,5) \cdot 10^8 m^2$$

 $CS = (1,3-1,5) \cdot 10^8 m^2$

Conclusions

Thus, new technical and technological solutions provide

- For LEO spacecrafts a significant increase of laser ranging accuracy (< 1 mm) and decrease of mass (50 g)
- For MEO spacecrafts new super accuracy "BLITS"
- For navigation satellites a significant increase of the retroreflector array cross-section and get a higher laser ranging accuracy
- For Luna's station compact and enough easy arrays with sufficient accuracy