

Space Debris Orbit Predictions using Bi-static Laser Observations. Case Study: ENVISAT

Harald Wirnsberger, Oliver Baur, Georg Kirchner

Austrian Academy of Sciences, Space Research Institute, Graz, Austria

19th International Workshop on Laser Ranging Annapolis Maryland, 27–31 October, 2014

Space Debris

man made objects which no longer serve any useful purpose

- 8% upper stages

- 12% defunct satellites

- 75% fragmentation debris

around 24.000 monitored objects (larger RCS than 10 cm)

Source: ESOC Space Debris Office

- high collision risk in Low Earth Orbit @ inclinations between 80°- 100°
- tracking usually performed with RADAR and OPTICAL methods alternatively Laser Ranging to Space Debris has been demonstrated

- "ideal" Space Debris object
 - defunct spacecraft (since April 2012) equipped with LRRs
 - one of the largest abondoned intact satellites (mass 8 t), collision risk
 - orbital altitude 770 km, inclination 98°, eccentricity 0.001
 - 25 SLR stations tracked ENVISAT in 2014 THANK YOU!
- allows to study orbit prediction errors against the background of sparse tracking data
- realistic Space Debris tracking data scenario (e.g. 3 passes from one single station)
- bi-static experiment (campaign in 2013)
 - ENVISAT one of the targets
 - 1 active station (Graz)
 - 3 passive stations

- active SLR-station fires laser pulses at times t_{start} (sampling @ 80 Hz) and detects reflected photons measuring Δt

- active SLR-station fires laser pulses at times t_{start} (sampling @ 80 Hz) and detects reflected photons measuring Δt
- passive station measures arrival time tstop of diffusely reflected photons
- a (first) approach in 2 steps
 - selection of the appropriate transmit time
 - separation of uplink τ_u and downlink τ_d
- considered as separate observations in dynamic orbit determination
- synchronization of stations is essential
- diffuse reflection from large object (solar panel, satellite body, etc.)

- computed with GEODYN II many thanks to GSFC for support!
- equally weighted batch least squares estimation (rejection level 3.5 σ)
- elevation cut-off 10°
- estimated parameters per arc
 - initial state vector
 - drag coefficient
 - SRP coefficient
 - empirical accelerations

 (along-track, constant, and 1/rev)
 - measurement bias per pass

conservative force model	
central body	EIGEN5s up to d/o 150
third body	JPL DE-403
solid earth tides	IERS conventions 2003
ocean tides	GOT 4.8
pole tides	IERS conventions 2003
non-conservative force model	
atmospheric density model	MSIS-86
solar radiation	Cannonball, cylindrical shadow model
reference frames	
inertial reference frame	J 2000.0
terrestrial reference frame	SLRF2008
tidal loading displacement	no atmospheric pressure loading
measurement correction	
tropospheric refraction model	Mendes-Pavlis
center-of-mass correction	not applied

- realistic laser tracking data scenario for Space Debris
 - orbit determination using tracking data during a period of 3 days
 - investigation of 3 different observation subsets

- realistic laser tracking data scenario for Space Debris
 - orbit determination using tracking data during a period of 3 days
 - investigation of 3 different observation subsets
 - (a) all available two-way laser ranges(10 passes collected by 6 stations, 115 NPs)
 - (b) two-way laser ranges from a single station (3 passes collected by Graz, 57 NPs)
 - (c) observation set (b) and additional 3 passes of bi-static observations (bi-static measurements between Graz and Wettzell, 155 NPs)

- realistic laser tracking data scenario for Space Debris
 - orbit determination using tracking data during a period of 3 days
 - Investigation of 3 different observation subsets
 - (a) all available two-way laser ranges(10 passes collected by 6 stations, 115 NPs)
 - (b) two-way laser ranges from a single station(3 passes collected by Graz, 57 NPs)
 - (c) observation set (b) and additional 3 passes of bi-static observations (bi-static measurements between Graz and Wettzell, 155 NPs)

- realistic laser tracking data scenario for Space Debris
 - orbit determination using tracking data during a period of 3 days
 - Investigation of 3 different observation subsets
 - (a) all available two-way laser ranges (10 passes collected by 6 stations, 115 NPs)
 - (b) two-way laser ranges from a single station (3 passes collected by Graz, 57 NPs)
 - (c) observation set (b) and additional 3 passes of bi-static observations (bi-static measurements between Graz and Wettzell, 155 NPs)

- reference orbit derived from "convential" two-way laser ranges collected by 12 SLR stations during 10 days (452 NPs)
 - post-fit observation residual RMS 1.1 m
- along-track error dominating, error dependent on prediction time

- observation set (c) outperforms single-station results by one order of magnitude
- including bi-static observations yields comparable prediction errors w.r.t. (a)

Validation with Laser Tracking Data

- all available two-way laser ranges are used for validation (no bi-static observations)
- comparable results to validation with reference orbit
- (b) large residuals for unconsidered tracking data in OD
- (c) slightly larger residuals in OD compared to (a)
- (a) max. residual 240 m
- (c) max. residual 260 m
- equivalent residual patterns of
 (a) and (c) in OP

- incorporation of 3 bi-static passes improves the quality of orbit predictions by one order of magnitude w.r.t. single-station results
- prediction errors are comparable to using 10 passes collected by 6 stations
- using a subset of laser tracking data collected during 3 days result in orbit prediction errors of around 300 m after 7 days of prediction
- laser observations can improve the reliability and accuracy of orbit predictions of selected objects
- extension to a wider range of (uncooperative) Space Debris objects (e.g. upper stages)
- investigation of possibilities to improve atmospheric drag modeling (e.g. attitude and spin*)

* see Kucharksi, D. et al. (2014): Attitude and Spin Period of Space Debris Envisat Measured by Satellite Laser Ranging, Geoscience and Remote Sensing, IEEE Transactions, Volume 52, Issue 12

- determined reference orbit using "convential" two-way laser ranges
- tracking data collected from 12 SLR stations during a period of 10 days
- post-fit observational residual RMS is 1.1 m

- selection of the appropriate transmit time tstart
 - based on the assumption that $\Delta t \sim \tau u + \tau d^*$
 - compute approximate transmit time via fixed-point iteration from t_{stop} and interpolation of Δt
 - select t_{start} from known firing times (80 Hz) constrained by $|\tau_u + \tau_d| < (2 \cdot 80 \text{ Hz})^{-1}$
- separation of uplink τ_u and downlink τ_d
 - uplink $\tau_u = \Delta t(t_{start})/2$ (cubic interpolation)
 - Td = tstop tstart Tu

* assumption is justified, because of the small distance between active and passive station, which is a requirement to detect diffusely reflected photons.