Session 14: 3158

Summary of Ground Station Performance in Five Years of Laser Ranging Operation to Lunar **Reconnaissance Orbiter**

Dandan Mao¹ (<u>dandan.mao@nasa.gov</u>), Jan McGarry², Mark Torrence³, Xiaoli Sun², Julie Horvath⁴, Christopher Clarke⁴, Mike Barker¹, Jim Golder¹, Erwan Mazarico², Gregory Neumann², David Smith⁵, Maria Zuber⁵

¹Sigma Space Corporation, Lanham, MD 20706, USA; ²Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; ³Stinger Ghaffarian Technologies, Greenbelt, MD 20770, USA; ⁴Honeywell Technology Solutions, Inc. (HTSI), Columbia, MD 21046, USA; ⁵Department of Earth, Atmospheric and Planetary Sciences, MIT, Cambridge, MA 02129, USA;

Ten Participating Stations from the International Laser Ranging Service (ILRS)

- Fire times recorded at each station:
- Accuracy to UTC < 100 ns
- Relative fire time error RMS < 200 ps (over 10 sec).

Tracking station	Station ID	Synchronous	FireRate	Events/ second in Earth Window	Energy per pulse at LRO (fJ/cm ²)
NGSLR (Greenbelt,MD,USA)	GO1L	YES	28 Hz	28	2 to 5
McDonald (TX,USA)	MDOL	NO	10 Hz	2 to 4	4 to 10
Monument Peak (CA,USA)	MONL	NO	10 Hz	2 to 4	1 to 2
Yarragadee (Australia)	YARL	NO	10 Hz	2 to 4	1 to 2
Hartebeesthoek (South Africa)	HARL	NO	10 Hz	2 to 4	1 to 2
Greenbelt (MD, USA)	GODL	NO	10 Hz	2 to 4	1 to 2
Herstmonceux (Great Britain)	HERL	YES	14 Hz	14	1 to 3
Zimmerwald (Switzerland)	ZIML	YES	14 Hz	14	2 to 10
Wettzell (Germany)	WETL	EFFECTIVELY	7 Hz	7	1 to 2
Grasse (France)	GRSM	NO	10 Hz	2 to 4	1 to 2

\succ Two range windows in one detector: 8 msec earth and up to 5 msec lunar

 \geq Range to LRO changes ~ 5-10 ms over an hour's visibility

	Stations	# 2-way passes	Stations	#2-way passes
	GO1L, GODL	61	HARL, HERL	1
	GO1L, MDOL	139	HARL, ZIML	4
	GO1L, MONL	318	GRSM, ZIML	49
	GODL, MDOL	58	GRSM, HERL	16
	GODL, MONL	93	ZIML, HERL	5
	MDOL, MONL	151	HERL, WETL	3
	ZIML,GO1L	1	ZIML,WETL	1
ĺ	\mathbf{C}			
	Stations	# 3-way passes	Stations	# 3-way passes
	GO1L, GODL,	# 3-way passes 48	GODL, MDOL,	# 3-way passes 58
	GO1L, GODL, MDOL	# 3-way passes 48	GODL, MDOL, MONL	# 3-way passes 58
	Stations GO1L, GODL, MDOL GO1L, GODL,	# 3-way passes 48 116	StationsGODL, MDOL, MONLGRSM, HERL,	# 3-way passes 58
	Stations GO1L, GODL, MDOL GO1L, GODL, MONL	# 3-way passes 48 116	StationsGODL, MDOL, MONLGRSM, HERL, ZIML	# 3-way passes 58 2
	Stations GO1L, GODL, MDOL GO1L, GODL, MONL GO1L, MDOL,	# 3-way passes 48 48 116 257 457	StationsGODL, MDOL, MONLGRSM, HERL, ZIML	# 3-way passes 58
	Stations GO1L, GODL, MDOL GO1L, GODL, MONL GO1L, MDOL, MONL	# 3-way passes 48 116 257	StationsGODL, MDOL, MONLGRSM, HERL, ZIML	# 3-way passes 58
	Stations GO1L, GODL, MDOL GO1L, GODL, MONL GO1L, MDOL, MONL Stations	# 3-way passes 48 48 116 257 44 #4-way passes 44	StationsGODL, MDOL, MONLGRSM, HERL, ZIML	# 3-way passes 58
	Stations GO1L, GODL, MDOL GO1L, GODL, MONL GO1L, MDOL, MONL Stations GO1L, GODL,	# 3-way passes 48 48 116 257 44 #4-way passes 44 6 44	Stations GODL, MDOL, MONL MONL GRSM, HERL, ZIML	# 3-way passes 58

LR Data Summary: From 06/30/2009 to 09/30/2014

LOLA/LR Clock Oscillator Long-Term Stability

Symmetricom 9500 series Oven Controlled Crystal Oscillator

LRO Clock Drift Rate Estimated from NGSLR

>Oscillator long term frequency stability is about +/-1.5e-12s per day before removing the

Ground Station Clocks Long-Term Behavior Comparison

Newtonian Light Time Residual = LRO MET – NGSLR UTC – Light Time – offset_drift_aging

temperature effect ➤ The drift rate of the LRO project-supplied spacecraft clock is approximately 1.0000006754 seconds per 1 s clock tick at present, and the clock has been slowing down gradually and steadily ➢After removing a constant time offset, a linear time drift, a quadratic frequency aging, a cubic frequency aging rate, and a calculated light time, the residuals are less than 15 us for the entire mission, which is ~200 times better than the 3 ms mission requirement LRO sun-safe incidents showed impacts on LRO clock's drift and aging rates due to the change of clock temperature

 \succ Ground stations are using different time sources, such as Rb clocks, Cs clocks, H-masers, etc.

- Time at NGSLR has been monitored to sub-nanosecond with an absolute accuracy of ~1ns and a stability mainly governed by the station clock, 4e-15 for the hydrogen maser (since January, 2013) and 1e-13 for the cesium clock source (before January, 2013).
- >Using LRO oscillator as a common clock, long term behaviors of most ground station clocks are compared with respect to NGSLR (shown in the figure above).
- Comparison results for each station are shown in separate figures, which are attached to the poster.