Poster #3071

Precise Orbit Determination and Measurement Bias Analysis for Starlette with SLR of the Korean SLR Station "DAEDEOK-73592601'

Young-Rok Kim*, Eunseo Park, and Hyung-Chul Lim Korea Astronomy and Space Science Institute, Daejeon, Korea yrockkim@kasi.re.kr

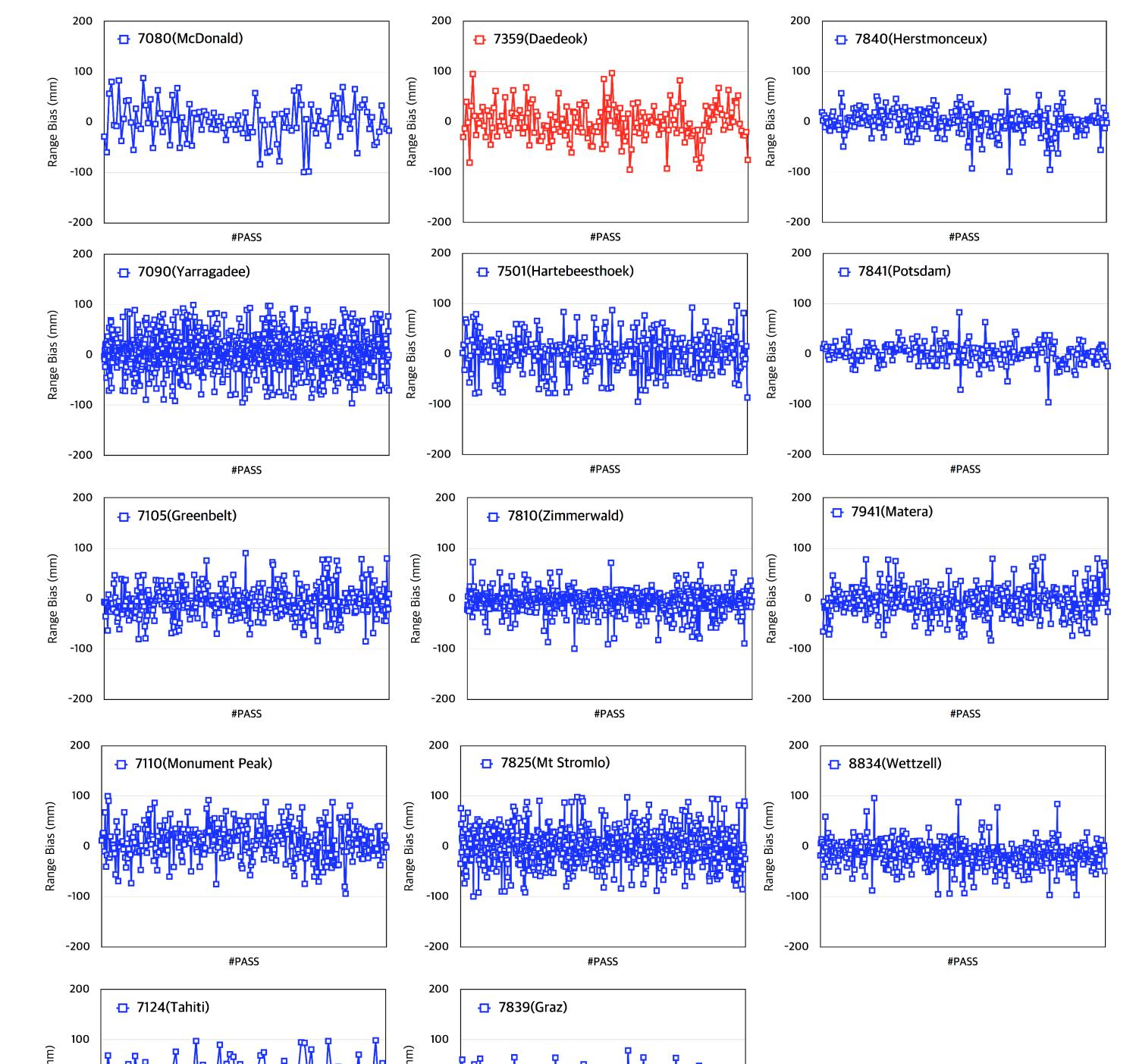
Korea Astronomy and Space Science Institute (KASI) has developed the first Satellite Laser Ranging (SLR) station of Korea, "DAEDEOK-73592601". The DAEK station has been provided SLR normal point (NP) data to International Laser Ranging Service (ILRS) data centers since August 2013 and became an active station in April 2014. As a new active ILRS stations, quality assessment of SLR NPs from DAEK station are required. In this study, precise orbit determination (POD) for Starlette and measurement bias analysis of ILRS stations are performed for quality check of DAEK SLR NPs. The NASA/GSFC GEODYN II software is used for POD and a weekly-based strategy is applied to process SLR NPs from January, 2013 to July, 2014 from 27 ILRS global stations. For air drag coefficients and empirical acceleration parameters estimation, 8h-based strategy is applied. For orbit quality assessment, post-fit residuals for total periods are investigated. For measurement bias estimation, quick orbital analysis from pass-by-pass approach is utilized. For Starlette, the mean RMS of post-fit residuals is 0.96 cm and the mean range bias and bias stability of DAEK stations are -1 mm and 34.8 mm, respectively.

Precise Orbit Determination

Precise Orbit Determination (POD) System and POD Strategy

Measurement Bias Analysis

Korean SLR Station DAEDEOK-73592601


General information

Status of the DAEK station

Item	Information	SOD	Start date	End date	Status
Station ID	7359	300	Start date	End date	Status
Code	DAEK	73592601	2014-0411	active	Validated
Site	Daejeon, Korea	73372601	2014-0411	active	Validated
Status	Active	73592601	_	2014-04-11	Quarantine
SOD	73592601		_	2011-01-11	

Measurement Bias Estimation

Estimation period : 2013/08 – 2014/06 (including DAEK NPs)

- H/W : Workstation with Intel Xeon E5645@2.40GHz (64bit Linux OS)
- NASA/GSFC GEODYN II system configuration

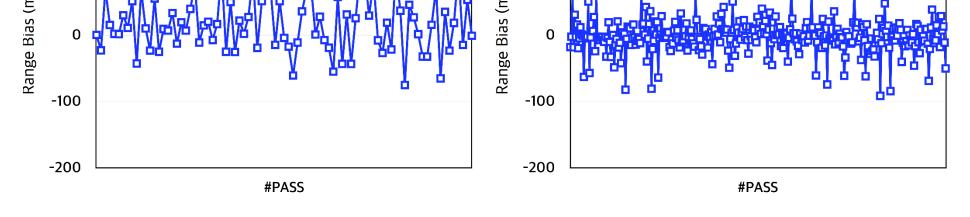
Model/Parameter	Description	Category	Specification		
Reference Frame		Sponsor	CNES (France)		
Reference system	Inertial reference system	Applications	Gravity field & POD		
Precession/nutation	IAU2000	Launch date	February 6, 1975		
Polar motion	C04 IERS	LRA diameter	24 cm		
Station coordinates	SLRF2008	NP bin size (s)	30		
Numerical Integration	Cowell's method	Orbit	Circular		
Step size	60 s	Inclination (deg)	49.83		
Arc length	7 days	Eccentricity	0.0206		
Dynamic Model		Perigee (km)	812		
Earth geo-potential	GGM-2C (90 by 90)	Period (min)	104		
Planetary ephemeris	JPL DE-403	Weight (kg)	47		
Earth tide	IERS convention 2003				
Ocean tide	GOT00.2		D Co		
Dynamic polar motion	Applied				
Relativistic effect	Applied				
Atmospheric density	MSIS-86				
Solar radiation	Box-wing macro				
Earth Albedo pressure	Applied				
Empirical acceleration	Radial, along and cross-track				
Measurement Model					
Observations	30s SLR normal points		DO		
Tropospheric delay	Mendes and Pavlis				
Estimation Parameters	Position and velocity of satellite	< Starlette with	60 corner cubes >		

Measurement data : NPs from 27 ILRS stations, 2013 (Q1/Q2/Q3/Q4), 2014 (Q1/Q2)

Station #	Station Location	Station #	Station Location
1824	Golosiiv	7501	Hartebeesthoek
1873	Simeiz	7810	Zimmerwald
1884	Riga	7820	Kunming
1888	Svetloe	7821	Shanghai
1890	Badary	7824	San Fernando
7080	McDonald	7825	Mt. Stromlo
7090	Yarragadee	7838	Simosato
7105	Greenbelt	7839	Graz
7110	Monument Peak	7840	Herstmonceux
7124	Tahiti	7841	Potsdam
7237	Changchun	7845	Grasse
7249	Beijing	7941	Matera
7359	Daedeok	8834	Wettzell
7406	San Juan		

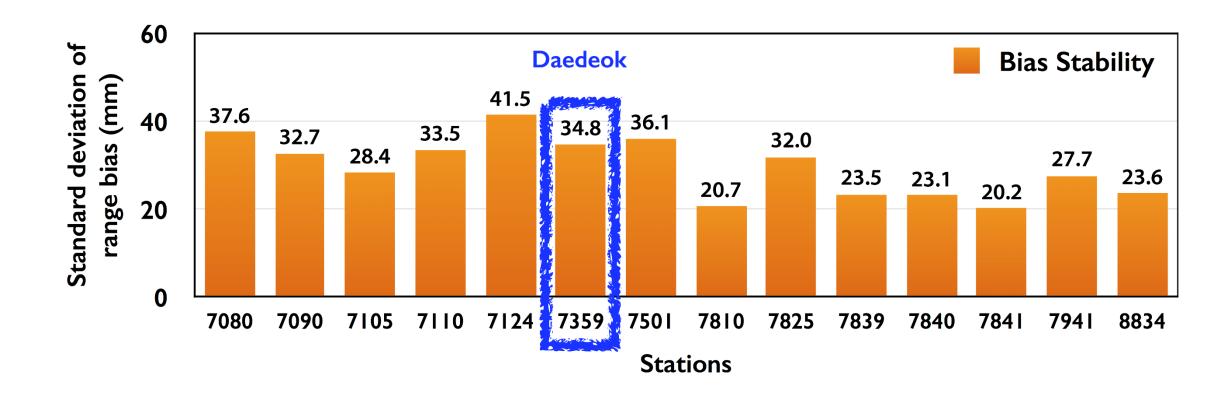
• 77 weeks, 124,555 NPs

- Estimation Strategy : <u>8h-based</u> air drag coefficients and empirical acceleration parameters
- The center of mass for Starlette : <u>78 mm</u> [5]
- Measurement bias : quick orbital analysis (pass-by-pass)
- Outlier for range bias statistics < |100mm|


Precise Orbit Determination Results

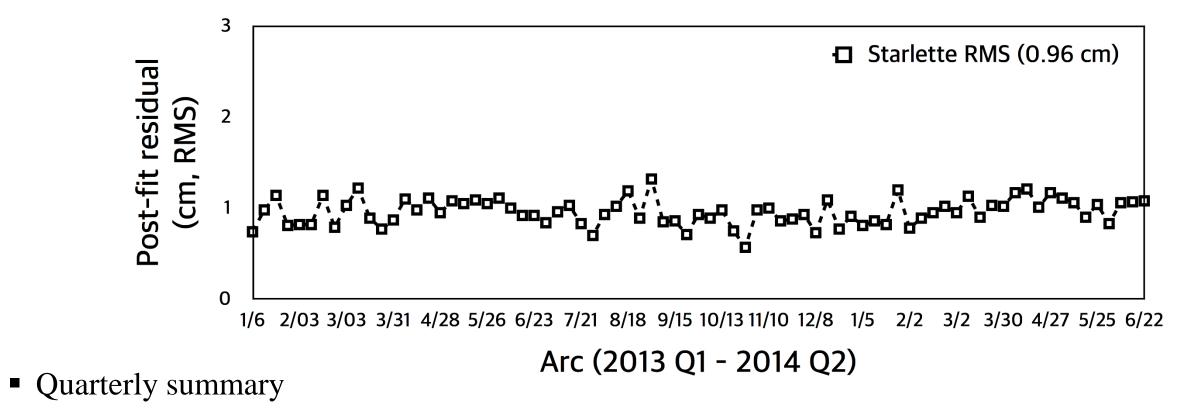
Post-fit Residuals

- Mean root mean square (RMS) value : <u>0.96 cm</u> (better than previous studies [1, 2, 3, 4])
- DAEK station : **0.73 cm**


Research	Post-fit residual (cm, RMS)	Arc Length	Gravity	Drag	Accel
Lejba et al. (2007)	1.30	10 day	60×60	24h	6h
Jeon et al. (2011)	1.93	7 day	90X90, <mark>180X180</mark>	8h	7day
Lejba & Schillak (2011)	l.87	I0 day	75×75	l 2h	<mark>6h</mark> /12h
Jagoda & Ruhkowska (2013)	2.40	7 day	2159X2159	7day	7day

< Range bias of ILRS stations by pass >

- Stability Analysis Measurement Bias
 - Mean bias and stability (standard deviation) of stations


Statio	n #	Mean (mm)	Std. dev. (mm)	#Pass	Station #	Mean (mm)	Std. dev. (mm)	#Pass
708	0	1.2	37.6	119	7810	-4.7	20.7	647
709	0	6.0	32.7	1057	7825	0.3	32.0	777
710	5	-6.2	28.4	417	7839	-1.7	23.5	335
711	0	9.1	33.5	330	7840	0.4	23.1	283
7124	4	17.2	41.5	86	7841	2.4	20.2	232
735	9	-1.4	34.8	178	7941	-4.7	27.7	387
750	1	2.4	36.1	301	8834	-14.6	23.6	520

Conclusions and Future Works

Conclusions

	2013 QI	2013 Q2	2013 Q3	2013 Q4	2014 QI	2014 Q2
Mean RMS (cm)	0.93	١.02	0.93	0.87	0.94	0.96
# NP	17,813	21,914	21,008	19,009	23880	20931

Precise orbit determination for Starlette using 27 ILRS stations including DAEK Post-fit residuals (Total) : 0.96 cm (RMS) Post-fit residuals (DAEK) : 0.73 cm (RMS) Measurement bias analysis Mean range bias of DAEK station : -1.4 mm Range bias stability of DAEK station : 34.8 mm

Future Works

• Continuous POD works for Starlette using SLR NPs from ILRS stations including DAEK • Long term bias stability analysis of DAEK using Starlette SLR NPs

References

[1] Lejba P., Schillak S., and Wnuk E. (2007) Determination of orbits and SLR stations' coordinates on the basis of laser observations of the satellites Starlette and Stella, Adv. Space Res., 40(1), 143–149. [2] Lejba P. and Schillak S. (2011) Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites, Adv. Space Res., 47(4), 654-662. [3] Jeon H. S. et al. (2011) Mass density of the upper atmosphere derived from Starlette's Precise Orbit Determination with Satellite Laser Ranging, Astrophys. Space Sci., 332(2), 341–351. [4] Rutkowska M. and Jagoda M. (2012) Estimation of the elastic earth parameters using SLR data for the low satellites Starlette and Stella, Acta Geophysica, 60(4), 1213-1223. [5] Sosnica K., et al. (2014) Contribution of Starlette, Stella, and AJISAI to the SLR-derived global reference frame, J. Geod., 88(8), 789-804.