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Retro-reflectors on the Moon
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Lunar Laser Ranging observatories on Earth

APOLLO, 3.5 m Wettzell

g

&
Apollo ‘\ * ' McDonald
awaii

QGrasse

L
\
-
\ - ~ » & - A N
Y o« )
E 0% &
b . .

Orroral

i; { § Leibniz
t 9j 2§ Universitat
too!4 | Hannover



Number of Normal Points

1000

800

600

400

200

Number of normal points

1970 - 2013: ca.18,100 normal points
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Basic formulas

= Basic equation
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= Analysis in a quasi-inertial frame
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= Temporal variations of the reflector
and station coordinates (tides ....)
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Relativistic analysis model

= Lunar orbit, ephemeris

- full relativistic model for motion of major solar system
bodies (Einstein-Infeld-Hofmann equations of motion)

- multipoles of Earth and Moon, lunar tidal acceleration

= Rotation of the Moon
- elastic Moon, core, external torques
- relativistic precessions

= Signal propagation
- atmospheric correction
- Shapiro time delay
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Model refinement — for relativistic tests

= Optional extension of the ephemeris model

- time variable gravitational constant G =G, + GAt +§GAt2

- geodetic precession of the lunar orbit in addition to EIH
- violation of equivalence principle (m,/m;)

- acceleration due to dark matter in the galactic center
(violation of equivalence principle)

- Yukawa term for modifying Newton‘s 1/r% law of gravity

- preferred-frame effects and metric parameters (Will, 1993)
- gravitomagnetic effects (Soffel et al., 2008)

- optional spin-orbit coupling (Brumberg/Kopeikin)
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LLR parameter fit

Analysis
= model based upon Einstein's theory
= weighted least-squares adjustment

= determination of various parameters of the Earth-Moon
system (about 200 unknowns, without EOPS)

Results of major interest
= coordinates and velocities (selenocentric frame, ITRFxXx)
= Earth orientation, ¢ = 0.5 mas (IERS)

= relativity parameters (grav. constant, equivalence principle,
1/r?-law, geodetic precession, metric ...)

= |unar interior, dynamic realisation of ICRS by the lunar orbit
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Further LLR parameters

= Earth k.0, lunar tidal acceleration (drg,, = 3.8 cm/year)
= rotation of the Moon

= |unar gravity field coefficients up to degree and order 4
= dynamical flattening g and y

= lunar k, (elasticity) and time lag (dissipation)

= mass of Earth-Moon system GMg,,

= C,p.qun (fixed to 2x10°7)

= and various relativity parameters
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Example: Yukawa-like perturbation

Test of 1/r? law (Yukawa)
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strongly correlated with
geodetic precession
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Benefit of more LLR observatories

= Simulation of one additional LLR observatory

- existing constellation simulated with 4 sites (green
dots) and 5 lunar reflectors

- additional site
* Northern hemisphere, Japan (label ,N%)
» Southern hemisphere, South Africa (label ,S)

—s—




Simulation scenario

= Simulated measurements

noise assumed such that annual wrms ~ 3-5 cm

40 years of data homogenously distributed (is not in reality!)
lunar elevation > 40°

case 1: only reflectors which are in the dark

case 2: all available reflectors

= Analysis
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estimated parameters: initial lunar orbit and rotation, reflector
and station coordinates (one site fixed), lunar gravity field,
tidal parameters, GM¢,,

comparison of 1o standard deviations from different runs




Simulation results

basis solution

X [mm] 242
Xref y [mm] 12
Case 1l z [mm] 243
only reflectors @ [as] 1.15
in the dark Euler 0 [as] 0.012
angles ,1aq] 1.15
GMeg.um [km3s2]  6.73 x 10
basis solution
X [mm] 73
Xret y [mm] 23
z [mm] 132
Case 2
¢ [as] 0.63
all reflectors Euler @ [as] 0.006
angles w [as] 0.63
GMg.y [km3s2]  1.45x 104
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Discussion of simulation results
= Best results when observing as many reflectors as possible

= Higher accuracy (~ 10% - 15%) when adding a new site at
,opposite” northern hemisphere or somewhere at southern
hemisphere

= Accuracy seems to be almost equal whether site in Japan or
South Africa is added, but

- simulated measurements do not account for atmospherically
caused loss of accuracy

- additional site at southern hemisphere has an advantage
(see following slide)
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NP distribution w.r.t. lunar declination

With condition lunar elevation > 40° the Moon is not observable
from the northern stations at its southernmost declinations

NP distribution, h > 40°
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With a site at southern hemisphere, the whole lunar orbit can be
observed at high elevations > 50° i.e. less atmospheric effects
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Results - relativity

Parameter

Results

Nordtvedt parameter n
(violation of the strong equivalence principle)

(3+3.6) - 10

time variable gravitational constant G/G [yr _1]

(1+1.5)- 1013

G/G[yr] (4+5) - 1015
(= unification of the fundamental interactions)
difference of geodetic precession Qgp - Qgesit ['/CY] (-3+5)-103
(1.92 "/cy predicted by Einstein’s theory of gravitation)
metric parameter y - 1 (space curvature; y =1 in (3+4)- 103
Einstein)
metric parameter B - 1 (non-linearity; B = 1) (1.7 £ 2) -103

or USing n- 4B " Ycassini - 3 with YCassini'l (~1O_5)

(0.8 + 1.0) -10
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Results — relativity (2)

Parameter Results
Yukawa coupling constant o, —,40 000 km (-0.6 + 1.8)-10-11
(test of Newton’s inverse square law for the Earth-
Moon distance)
special relativity £, - ;- 1 (-5+12) - 10°
(search for a preferred frame within special relativity)
influence of dark matter §, [cm/s?] (0+2)- 101
(in the center of the galaxy; test of strong
equivalence principle)
preferred frame effects a, (3+£3)-10°

o, (2+2)-10°

(coupled with velocity of the solar system)
preferred frame effect a; (1.6 £3)- 103
(coupled with dynamics within the solar system)
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Conclusions

= LLR is a unique tool for studying the Earth-Moon system and
testing general relativity, e.g.

Yukawa test @, 40001 = (-0.6£1.8)-107"

= Several parameters of the LLR model contribute to a
multitude of geodetic applications (reference frames, long-
term Earth rotation, lunar interior ...)

= One further LLR site in Japan or South Africa would improve
the results for many LLR parameters by 15% (or more)

= Good results are only possible because of fantastic long-term
lunar tracking by observatories (> 43 years of data). Thanks!
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