THERMAL ANALYSIS OF APOLLO 11 RETROREFLECTOR

Professor Douglas Currie

University of Maryland, College Park, MD, USA NASA Lunar Science Institute, Moffett Field, CA INFN – LNF, Laboratori Nazionali di Frascati, Italy

& The LLRRA-21 Teams with the

Lunar University Network for Astrophysics Research Jack Burns, Director

OBJECTIVES

- Apollo Retroreflector Arrays Apollo 11
 - Past and Current Performance
 - Lunar Night, Lunar Day and Lunar Eclipse
 - Role of "Dust"
 - Simulation Approach for this Discussion
 - Simulation of Radiation and Conduction
 - Solar Illumination, Interaction with Regolith and Internal
 - Structural Simulation has Three Domains
 - Solar Effects Internal Absorption in CCR IDL UoM
 - Environmental Thermal Effects Thermal Desktop Giovanni
 - Optical Analysis of Thermal Effects IDL UoM
- Address Physical Principles not Structure of Simulation
 - Initially Developed for the LLRRA-21 for Delivery to the Moon
 - Also Applicable to CCR Arrays in Orbit

OBJECTIVES

- Highlight Critical Issues for LLRRA-21
 - Assure High Initial Performance
 - Effect of Long Term Weathering over 40 Years
- Stimulate Suggestions
 - Of Missing Elements that are Important
 - Especially Issues that have Arisen in Other CCR Systems
 - To be Considered for Future Implementation
- Provide Options for Use of Simulation Programs
 - By Other Groups
 - Especially for Satellite CCR Systems
 - For Apollo, Thermal Problems Reduce Signal >50%

LLRRA-21 Thermal/Optical Simulation

RAY PROPOGATION OF SOLAR INPUT

• For a "Perfect" CCR

Metal Coating

- Tight Return Beam
- Unacceptable Solar Heating

Total Internal Reflection

- No Coating on Back Faces
 - No Back Face Absorption
 - Less Tight Beam
 - TIR Breakthrough for Some Angles
- Solar Absorption
 - Spatial Variation of Heat Loads
 - Absorption in CCR
 - Depends on Solar Spectrum
 - Depends on SiO2 Absorption

RAY PROPOGATION OF SOLAR INPUT SOLAR SPECTRUM

RAY PROPOGATION OF SOLAR INPUT FUSED SILICA ABSORPTION

RAY PROPOGATION OF SOLAR INPUT MULTIPULE RAYS

Previously a Single Ray • Now propagate Many Rays • - Currently 1000 **Rectangular Grid** • Each Ray Creates: • Independent Heat Load In each 2 mm Cube Propagates Rest of Energy

RAY PROPOGATION OF SOLAR INPUT DUST LAYER ON CCR

Add Dust Layer on Front
 Blocks Input and Output

- Night Observations
 - Compare with Theory
 - ~ 67% Coverage
- Optical Properties
 - 95% Absorption in Visible
- Thermal Properties

 85% Emissivity

Incoming Ray Exits
With Lateral Offset
Some Exiting Rays Hit Wall

- Heat Absorption in Wall
- Diffuse Reflection from Wall

- For Some Sun Angles

 TIR is Violated
- Portion is Fresnel Reflected
- Portion is Absorbed
 Behind CCR in Pocket
- Portion Leaves Pocket
 - Conformal Thermal Shield
 - Cylindrical Pocket

APOLLO 11 CONFIGURATION

THERMAL MODEL

- Thermal Desktop
 - C&R Technologies
- AutoCAD Model
- AutoMesh
 - Creates Nodes
 - According to Complexity
- Properties for Model
 - Physical Material Properties
 - Measured and Estimated by ADL
 - Effects of 45 years Exposure
 - Guesses
 - ~30 Relevant Parameters

SOLAR ILLUMINATION ON REGOLITH

Need Regolith Temperature • Changes During a Lunation Change During an Eclipse **Different Layers have:** • Different Heat Conduction Different Heat Capacity Different Density Data to Model Behavior • - From Apollo Heat Flow Exp. From Thermal Imaging of Surface

SOLAR ILLUMINATION ON REGOLITH

SOLAR ILLUMINATION ON EXTERIOR

- Properties of External
 - Visible Absorption
 - Infrared Emissivity & Abs.
- Sources of Data
 - University of Maryland
 - Arthur D. Little Report
 - Effects of Weathering
- Estimates
 - Many Runs to Compare

HOUSING INTERACTION WITH REGOLITH

- Heat Exchanges via Radiation
 - Two Way Effects
 - Changes over Lunation
 - Changes over Eclipse
- Different Temperatures of
 - Sides of Housing
 - Bottom of Housing

RADIATION EXCHANGE WITH RETAINER RADIATION TO SPACE

Interior of Retainer Ring
 CCR to Retainer Ring

- Radiation Exchange
- Emission to Space from
 - CCR Front Face
 - Exterior Surface of Housing
 - Interior of Retainer Ring

PRIMARY CONDUCTION PATHS

EXTERIOR OF PANEL

INTERNAL OD TEMPERATURE DISTRIBUTION

Using the Listed Inputs

- Run Thermal Desktop
- This Results in
 - 3D Temperature Distribution
 - In the CCR Interior
- Temperatures of Other Elements
 - Not Currently of Primary Interest

RAY SAMPLING OF 3D TEMPERATURE

Laser Ray Enters CCR
Encounters Different Ts
Converts to Phase dn/dT
Determines Integral Phase
Produces Phase Error Map
Repeat for 1,000 Rays

2D PHASE ERROR MAP

phase map (-1 to +1)

Change of Phase At Each Point

FAR FIELD DIFFRACTION PATTERN

AXIAL TEMPERATURE EFFECT

Sample of Results
Effect of Axial Gradient

From 1968 Analysis
80% Return at 1 Degree
Neglects Radial Effects

Confirmed by Later Analysis

E.g., Tom Murphy Recent Paper

F-031_1000_2_00_015_040_0_AM0_311_S6_G1_PR___.00_0000_08_00_090_360_^_SS_00000_99999_05_95_01_MLL_090-360_G_^_MAT HL run on Oct 24 2013, TD run on Oct 25 2013, TPS run on Nov 07 2013 -38 27.53 1000 2 0.40 00 015 040 0 1 2 6 12 4 1 8 no DWG info

38.0 0.000 0.000 532.0 512 0.267

F-031_1000_2_00_015_040_0_AM0_311_S6_G1_PR___.00_0000_08_00_090_360_^_SS_00000_99999_05_95_01_MLI_090-360_G__MAT HL run on Oct 24 2013, TD run on Oct 25 2013, TPS run on Nov 07 2013 -38 27.53 1000 2 0.40 00 015 040 0 1 2 6 12 4 1 8 no DWG info

38.0 0.000 0.000 532.0 512 0.267

F-019_67_02_10_01_01_01_001_340_780_311 F-020_67_02_10_01_001_001_340_780_311 F-021_00_02_10_01_01_001_001_340_780_311 F-022_67_02_10_01_001_001_340_780_311 __0.300 __1.000 __1.000

F-023_00_02_10_01_01_001_001_340_780_311 F-024_67_02_10_01_01_001_001_340_780_311 _1.000

16 April

STATUS AND FUTURE

- Current Results for Apollo 11 Array
 - Tab Conductance most Important
 - Reasonable Agreement with ADL
 - Eclipse Difficult
- Coatings/Parameter Variation
 - About 25 that are Relevant
- Future Directions
 - Temperature Variation of Index of Refraction i.e. dn/dT(T)
 - Eclipse Matching Model to Observations
 - Solar Radiation into Cylindrical Pocket

CONCLUSIONS

-Thermal Effects can Greatly Reduce Return Signal Optical/Thermal/Optical Modeling -Detailed Simulations are Necessary -To Achieve "Theoretical" Performance -Choosing Optimal Design Parameters

Thank You! any Questions? or Comments?

with Special Acknowledgements to NASA Lunar Science Sorties Opportunities NASA Lunar Science Institute Italian Space Agency INFN-LNF, Frascati LSSO Team & LUNAR Team

Unregistered HyperCam 2

NLSI Commerce Virtual Lecture February 2011

Note: Linear Vertical Temperature Gradient

F-031_1000_2_00_015_040_0_AM0_311_S6_G1_PR___00_0000_08_00_090_360_^SS_00000_99999_05_95_01_MLI_090-360_G_MAT HL run on Oct 24 2013, TD run on Oct 25 2013, TPS run on Oct 30 2013 -38 27.53 1000 2 0.40 00 015 040 0 1 2 6 12 4 1 8 no DWG info 38.0 0.000 0.000 532.0 512 0.267

Time during Lunation (Days)

lambda (nm)

 $F-031_131024_0.00$ (angle=0.00 c alfferential depth plbt (þer mm² in mm slab) Heat Loads (missing data warning) Temperatures __.00_000_08_00_090_360_^_SS_000(___ANO_311_S6_61_PR___00_0000_08_00_090_360_^s5_00000_99999_05_95 5_G1_PR_ 100.0 power (μ W/mm² in mm slab) 25 --- Power Entering CC --- Tip --- Inner Can --- Total reflected to space --- Sun Shade (from sunshade and CCR 2.0 --- SunShade Absorption 10.0 Reflected from SunShad WUL 1.5 (to space or to regolith) € 300 --- Incident on CCR & SS 2 1.0 1.0 0.5 100 0.1 0.0 -30 - 25 - 20 - 15 - 10 - 5 0 5 5 10 15 20 25 30 10 15 20 Time during Lunation (Days) 25 0 depth (mm) Time during Lunation (Days) F-031_131024_0.00 (0.00 deg) RMS of phase map differential depth plbt (per slab) ∆T w.r.t. Face Center -- Full aperture Heat Loads .00_000_08_00_090_360_^_SS_00C_0_AM0_311_S6_G1_PR_ 36_G1_PR_ __.00_0000_08_00_090_360_^_SS_00000_99999_05_95 -- 90% of aperture 0.100 0.30 - Back Faces of Conformal SI --- Tip - Face Center 0.1000 --- Tab - Face Center --- Cylindrical Walls - Ground S --- Edge - Face Center 0.25 (W/slab) (waves) (watts) 0.50 0.0100 Face (K) power RMS p 0.15 0.010 w.r.t. 1 10.10 Heat 0.0010 0.05 0.0001 0.001 0.001 -30 - 25 - 20 - 15 - 10 - 5 0 5 0 5 10 15 20 25 30 10 15 20 Time during Lunation (Days) 25 0 5 10 15 20 25 30 depth (mm) Time in Lunation (Days) Time during Lunation (Days) $F-031_{131024}_{0.00}$ (angle=0.00 (Lunar Return Signal Level 40 Input spectrum _PR_ _.00_0000_08_00_090_360_^_SS_000(exit spectrum Heat Loads ΔT w.r.t. Tip ______. 5_G1_PR___.00_0000_08_00_090_360_^_SS_000(_0_AM0_311_S6_G1_PR___00_0000_08_00_090_360_^SS_0000_99999_05_95[ID Array Return w.r.t. APOLLO Observations 0.0001 --- Total Absorption in CC Maui --- Face - Tip 30 --- Inner Con - Tip --- Sun Shade - Tip 0.8 - Apollo 15 --- Absorbed in Front 8 r Ap17 obs-ШU Strength 1.000 0.6 per 20 £ loc Mm ē 0.100 20 J6:S 0.4 Į. lative 10 0.010 10 Rel 0.2 0 10000 0.001 0.0[100 1000 10 15 20 25 30 5 10 15 20 Time during Lunation (Days) 25 0 5 10 15 20 25 30 0 5

Time in Lunation (Days)

25

10 15 20 Time during Lunation (Days)

10 15 20 Time during Lunation (Days) 25

F-025_1000_2_00_015_040_0_AM0_311_S6_G1_F-026_1000_2_00_015_040_0_AM0_311_S6_G1_F-027_1000_2_00_015_040_0_AM0_311_S6_G1_F-028_1000_2_00_015_040_0_AM0_311_S6_G1_DA_00_0000_08_00_090_360_^SS_00000_9 DA DA 00_0000_08_00_090_360_^SS_00000_9 DA 67_0000_08_00_090_360_^SS_00000_9 DA 00_0000_08_00_090_360_^SS_00000_9 DA 00_000_08_00_090_360_^SS_

 F=033_1000_2_00_015_040_0_AM0_311_S6_G1_
 F=034_1000_2_00_015_040_0_AM0_311_S6_G1_

 DA____00_0000_08_00_090_360_^SS_00000_9
 DA____67_0000_08_00_090_360_^SS_00000_9

 9999_05_95_01_MLL_090-360_G_MAT
 9999_05_95_01_MLL_090-360_G_MAT

