Local ties control in application of laser time transfer

Jan Kodet, Ulrich Schreiber, Johann Eckl#, Ivan Prochazka*, Petr Panek+

Technische Universität München #Bundesamt für Kartographie und Geodäsie *Czech Technical University in Prague +Institute of Photonics and Electronics

Motivation – optical time transfer ground to space

- T ... ground clock
- E ... space clock
- D ... distance / delay by Satellite Laser Ranging mm accuracy using D ps pulses

satellite time scale

ground time scale

 t_{stop1}

 t_{start}

 τ_{offset}

 t_{stop2}

- Based on existing SLR network
- Several projects in space or in development
 - T2L2 France
 - LTT China
 - ELT ESA
 - Glonass
 - Space to ground comparison of clocks 4 ps @ pass,7 ps @ 10^6 s, accuracy 50 ps
 - Used to calibrate MWL
- Time transfer is actually realized between space scale and scale kept inside event timer => requires deep understanding of timing systems of SLR stations

Geodetic Observatory Wettzell

- 5x Cs clocks, HP1732 UTC(IFAG) reference point
- 4x H Maser clocks, SLR and VLBI are running from EFOS 18
- Building separations (50 100m long interconnecting cables)

Timing system in Geodetic Observatory Wettzell

18th International Workshop on Laser Ranging, Japan, Nov 2013

Temperature dependency of cables

- Cables frequently used in Wettzell are RG214, RG58, RG223
- Interconnecting cables are 90 cm underground => annual variation +3 / 16°C
- Temperature stability >1000ppm
- => expected annual changes > 0.5ns/year
- Instrumentation temp. dependency ~20 ps

Two Way Time Transfer principal

- Single coaxial cable is used for interconnection of two ET
- TWTT modules activated alternately
- Resulting time scale diff.:
 DS = ((EB1 EA1) + (EB2 EA2)) / 2
- TWTT ~1ps rms; < 10ps
 systematic error for
 distances > 100m
- Systematic error depends on quality of the interconnecting cable
- LDF4, 100m => 3ps

IEEE, 2012, p. 1-7. ISBN 978-1-4577-1821-2

Calibration of the TWTT method for comparing 1pps time scales

•TWTT method is used to set "0" between Event timers

1pps are connected to 2nd input
 additional calibration

•Measuring difference of 1pps and TWTT input (using spitted pulses); $\Delta ET = 3.6 \text{ ps}$

.Connecting to ref. points with cables τ_{C1} and τ_{C2} and exchanging them => $\Delta \tau_{C2} = \tau_{C2} - \tau_{C1} = 10.183$ ns

NPET see Thursday afternoon TWTT in

 $SLR_{ref.} - UTC(IFAG) = ppsDiff - \Delta \tau_{C} - \Delta ET$

TWTT UTC(IFAG) \leftrightarrow SLR

TWTT UTC(IFAG) ↔ SLR two different clocks

- UTC(IFAG) time scale is derived from Cesium
- SLR time scale is derived from H maser EFOS 18
- TWTT time scale comparison < 1ps rms
- T2L2 and ELT requires picoseconds control of local time scales

TWTT GNSS WTZS \leftrightarrow SLR

same clock, different passes

- Implementing TWTT method to support T2L2 and ELT time transfers
- Comparing T2L2 and GNSS time transfer
- TWTT was calibrated several times; consistency < 50 ps (BNC
 600 ps connectors)
 - During the T2L2 campaign Wettzell was calibrated
 - Comparing T2L2 calibration and TWTT results:
 - biggest difference 252 ps

TWTT implementation in to the observation

Comparing Cs vs. H maser during the pass

Comparing H maser vs. H maser during the pass

- Comparing Cs vs. H maser during 20 min pass
 - Observation must be corrected piecewise with linear fit
- Comparing H maser vs. H
 maser during 20 min pass
 - Observation can be corrected
 with linear interpolation
- *.NPT and .FRD (rate data) unchanged
- *.FRF changed including TWTT measurements and calibration T2L2/ELT

¹⁸th International Workshop on Laser Ranging, Japan, Nov 2013

TWTT UTC(IFAG) \leftrightarrow SLR, problems

- Jumps in clocks in SLR; during storms
- The time bias is not corrected to the same value
- Problems when T2L2 calibrate us, the calibrations are not valid after the jump
- Mission calibration should be related only to SLR
- Time difference between SLR and another techniques (GNSS, MWL, ...) must be reported
- Time setting in SLR Event timer works with uncertainty > 1 ns

http://www.geoazur.fr/t2l2/en/data/v4/

rms

nanosec

5

Conclusion

- The possible implementation of Two Way Time Transfer method using two event timing systems was investigated in Geodetic Observatory Wettzell
- The absolute calibration for comparing time scales of TWTT was done (reproducibility < 50 ps)
- In the frame of T2L2 campaign Wettzell was calibrated. Calibration is within 250 ps compared to TWTT
- In future it is planned to apply TWTT measurements in to *.FRF

Event timing system - New Pico-Event Timing Temperature dependence ~170 fs/K

Timing jitter:

Synchronous

490 fs rms

sigma = 490fs

Constant fraction of ToA [ps]

5000

4000

3000

2000

1000

2500

cell width = 300fs

No. of samples

Synchronous pulse ~ 490 fs rms

Asynchronous pulse ~ 700 fs/ch rms

- TWTT systematic error < 10ps
- > 4 kHz measurement rates, depends on quality of interconnecting cable

18th International Workshop on Laser Ranging, Japan, Nov 2013