

GNSS Satellite Orbit Validation Using Satellite Laser Ranging

Oliver Montenbruck^(1,4), Peter Steigenberger^(2,4), Georg Kirchner⁽³⁾

(1) DLR/GSOC
 (2) TUM/IAPG
 (3) ÖAW/IWF
 (4) IGS MGEX

GNSS Satellite Orbit Validation Using Satellite Laser Ranging

D K

- → Motivation
 - → New GNSS Constellations
 - → The IGS MGEX Project
- → SLR Orbit Validation
 - → BeiDou
 - → Galileo
 - → QZSS
 - → IRNSS
- → Operational Aspects
- → Summary and Conclusions

New GNSS Constellations

- → BeiDou
 - → 14 operational satellites (GEO/IGSO/MEO)
 - → Initial operational service (regional) since Dec. 2012

→ Galileo

- → 4 satellites (in-orbit validation)
- → Non-operational broadcast ephemerides

→ QZSS

→ 1 IGSO satellite (operational) since 2010

→ IRNSS

- → First IGSO satellite launched July 2013
- → No ICD

The IGS Multi-GNSS Experiment (MGEX)

- Preparation of International
 GNSS Service (IGS) for support
 of new signals and constellations
- → New global tracking network
 - → Galileo, BeiDou, QZSS
 - → ~90 stations (Sep. 2013)
 - → Real-time streams (~70 stations)
- ✓ First precise orbit and clock products
 - → Galileo (CODE, TUM, CNES/CLS, GFZ)
 - → QZSS (TUM, JAXA)
- Cummulative broadcast ephemerides

How does SLR tracking support our understanding of the new GNSSs?

BeiDou (Broadcast Orbits)

D

Montenbruck O., Steigenberger P.; *The BeiDou Navigation Message*; IGNSS Symposium 2013, 16-18 July 2013, Outrigger Gold Coast, Qld, Australia (2013).

BeiDou (Precise Orbits, Wuhan University)

C11

SVN	PRN	Average [cm]	RMS [cm]
103	C08	-3.6	5.8
105	C10	-0.3	5.8
M03	C11	-2.1	3.9

Figures & table from:

Qile ZHAO, Zhigang Hu, Jing Guo, Ming Li, Xing Shu, Guo Chen, Chuang Shi, Jinglan Liu; *Positioning Performance of BeiDou Navigation Satellite System*; IGNSS Symposium 2013, 16-18 July 2013, Outrigger Gold Coast, Qld, Australia (2013).

- \neg Very encouraging results
- Independent confirmation pending (data/products not publically available)

- → Combined CODE+TUM products for ~ 1.5 years
- → 1/rev radial orbit errors with up to +/- 20 cm
- \neg Amplitude varies with Sun-angle above orbital plane (β -angle)

Galileo-IOV (cntd.)

- → SLR residuals depend only on Sun-satellite-Earth angle (γ)
- Solar radiation pressure modeling?
 (see Svehla et al., IAG 2013)
- → Problem
 - → SLR yields (mainly) radial position error
 - → $\Delta R(\gamma(t))$ is insufficient to determine radial acceleration error!

in der Helmholtz-Gemeinschaft

QZSS 60 -QZS-1 JAXA

- Best quality of JAXA product (more stations, proper handling of orbit-normal mode, ON)
- Systematic variations (-20...+30 cm) during yaw-steering mode (YS) indicate radiation pressure modeling problems

IRNSS-1A

- → (Almost) no GNSS tracking yet
- SLR tracking enables independent orbit determination
- Initial broadcast ephemeris assessment

D

۲

Operational Aspects

- →Increasing overall number of GNSS satellites with laser retroreflector arrays
Galileo: $4 \rightarrow 24...27$ BeiDou: $14 \rightarrow 30$ (?)GPS: ?
GLO: $24 \rightarrow$?QZSS: $1 \rightarrow 4...7$ IRNSS: $1 \rightarrow 7$ GLO: $24 \rightarrow$?
- Large number of geostationary (GEO) and inclined geosynchronous (IGSO) satellites over Asia
 - Large distance, weak returns
 - Few supporting stations in area of interest
- High-rate stations ("kHz Laser")
 - Fast collection of normal points with sufficient echoes (<< 5 min)
 - Allows rapid switching between objects
 - → Example GRAZ:
 - 20 LEO+14 HEO in 7 h
 - Supports 24 GLO, 2 GPS, 4 GAL, 1 IRNSS
- Only small subset of Beidou constellation supported by ILRS
 - No support request
 - No predictions (but: CPFs can be generated from broadcast ephemerides!)

Summary and Conclusions

- SLR tracking offers indispensible tool for validation of GNSS orbit products and is gratefully acknowledged!
- → Radial accuracy of GNSS precise orbit products is at 10 cm level

M

- → Galileo: ~ 10 cm, QZSS: ~ 20 cm, BeiDou: ~10 cm (TBC)
- ✓ Mean offsets at 5 cm level
- SLR tracking can help to overcome limitations of GNSS-only orbit determination

 - → Constrain GEO longitude
- → Tracking of "all" GNSS satellites desired
 - ✓ Multiple satellites per orbital plane
 - → Different orbit types (MEO, IGSO, GEO)
- More high-rate stations encouraged
 - Fast normal point generation
 - Increased tracking capacity

