

CONFIGURATION MAP

MOBLAS-4 Monument Peak, CA

Greenbelt, MD

Dave McCormick November 2013 Presentation: 13-0206

MOBLAS-8

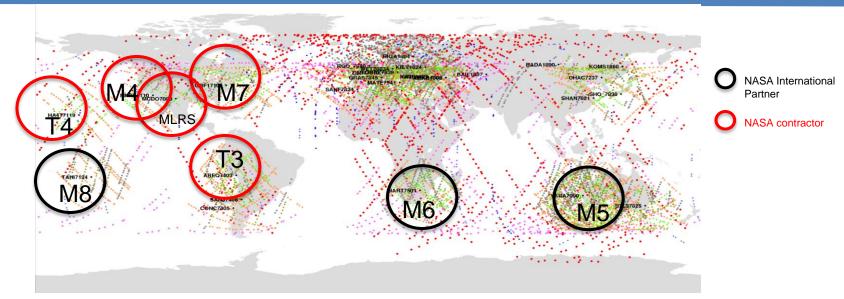
French Polyne:

MLRS Fort Davis, TX

TLRS-4 Mount Haleakala, HI

TLRS-3 Arequipa, Peru

MOBLAS-6 beesthoek, South Africa

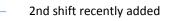


MOBLAS-5 Yarragadee, Australia

SLR Operations Status Summary

Station Operations

Maryland (M7)


California (M4)

Texas (MLRS) - Low Yield (tracking issue)

testing changes, Engineering visit planned (laser, radar)

Maui (T4) - Low Yield (tracking issue) - testing Peru (T3)

Tahiti (M8) (CNES)

- S. Africa (M6)(HARTRAO)
- Australia (M5) (GA)

Network Sustainment

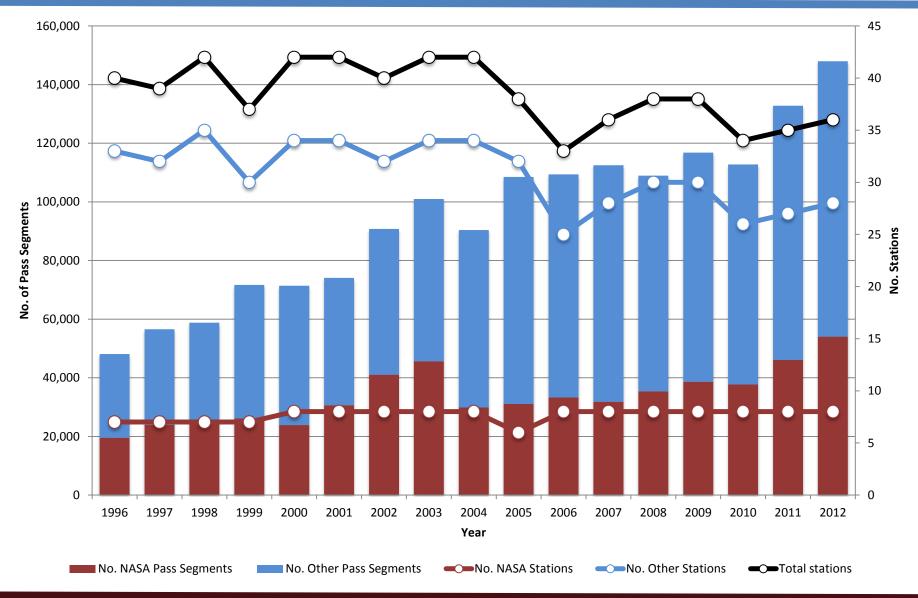
- Obsolescence Replacement
- Resources few network Engineers
- Site Ties and Monuments Maui one cal pier 2nd planned
 - M6 survey overdue in planning stage

Data Operations Center

Hardware/software

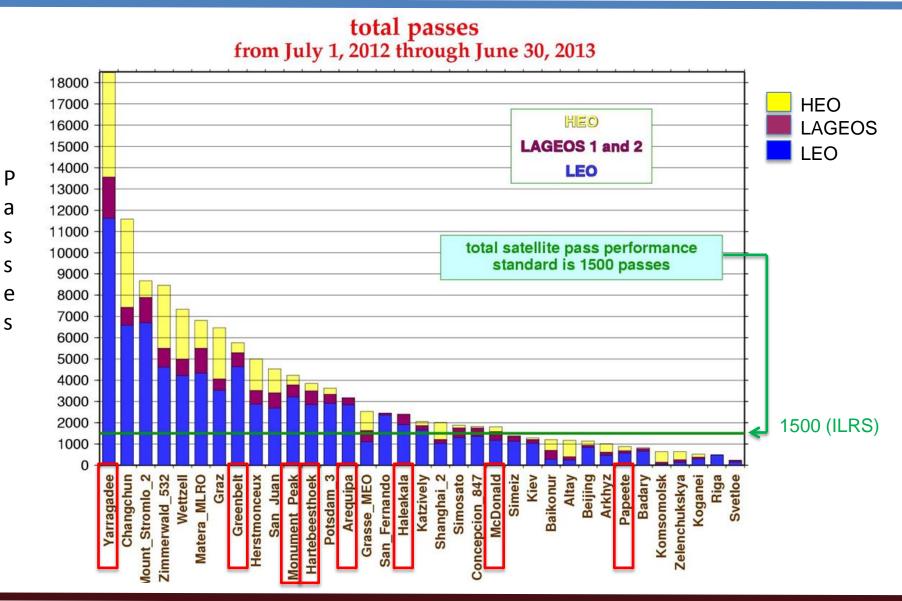
Hardening/improvements

International Laser Ranging Service

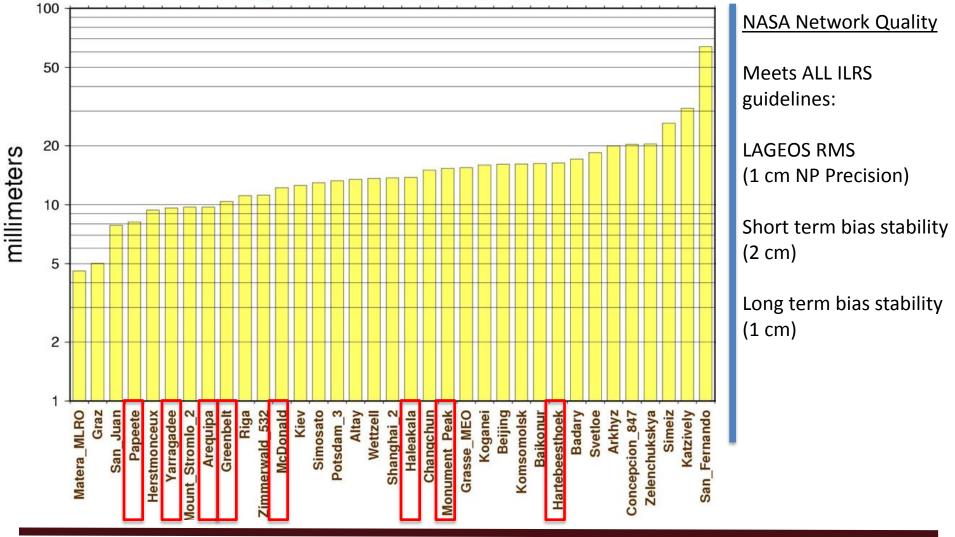

Liaison /Central Bureau Management Data Analysis

ILRS/NASA Yearly Data Yield

Network Manager code 453 September 2013


Graph by Carey Noll

SLR Data Quantity



SLR Data Quality

LAGEOS RMS (single shot for satellite pass)

- The NASA DOC advances since the last ILRS workshop
 - Conversion to CRD format processing (May 2012)
 - Daily analysis products require 24/7 connectivity/support
 - Improved redundancy and monitoring capability
 - Hardening of systems and management of processes
 - IT Security to industry standards
 - EDC/CDDIS comparison
 - QC standardization
 - Configuration Management of Hardware/SW/Processes
 - Re-Engineering Project
 - Obsolescence mitigation, process streamlining, reliability
 - Primary computer hot spare, added UPS for FTP server
 - Automation of manual processes, URL interface is planned

Greenbelt Operations Team

- Peru (TLRS3) Universidad Nacional de San Agustin (3 x 5 shifts)
 - REGINA collocated including survey
 - New LASER, EL axis repair
 - Improved yield
- Hawaii (TLRS4) University of Hawaii (2 x 5 shifts)
 - Telescope mount refurbishment including survey
- California (MOBLAS 4) EXELIS (2 x 5 shifts)
 - Site Survey performed
 - Refurbished RADAR

- Australia (MOBLAS 5) Geoscience Australia (3 x 7 shifts)
 - RADAR at NASA for refurbishment
- South Africa (MOBLAS 6) HARTRAO (3 x 5 shifts)
 - NASA training 2012
 - Refurbished RADAR
- Maryland (MOBLAS 7) EXELIS (3 x 5 shifts)
 - Refurbished RADAR
 - Refurbished Mount Slip Ring
 - Supported Successful collocation with NGSLR
 - VLBI Mask (for RFI impingement)

- Tahiti (MOBLAS 8) CNES, Universite Franciase du Pacifique
 - Repaired RADAR, servo system, HEO ranging amplifier
 - FTLRS Collocation 2011
 - 2 shift operation 2013
- MLRS University of Texas, CSR (2 x 5 shifts)
 - Telescope adjustment, Revised controller software
 - Pending: New LASER, Radar refurbishment
 - Continued Leadership in Lunar Ranging and SLR Analysis

Obsolescence Mitigation

- Limited funding
- Highest risk components
- RADAR

Laser	TX_RX Electronics	Telescope	MetSensors	Computers, SW	LHRS	Facility
Oscillator	Photodiode	Mechanics-Bearings	Pressure	Controller	Radar Tranceiver	Power
Amplifier	MCP-PMT	Electrical-Slip Ring	Temp	Processor	Local Controller	HVAC
PUs	Amplifier	Optics-Primary Mirror	Humidity	Peripherals	Remote Controller	Grounding
CBs	CFD	Optics-Secondary Mirror	* Wind	CAMAC	Power Supplies	Communications
Optics	Quad Integrator	Optics-Window		DAC - Servo	Antennae	Security
HV cables	NIMBin	Servo-MPACS		UPS	Encoders	Vans
Chiller	Time Interval Counter	Servo-amplifiers		Control SW	Harmonic Drive	Cal Piers
	Star Camera	Servo-Tach sensors		Processing SW	Servo-amplifiers	Survey Equipment
	Large FOV Camera	Servo-Limit Switches			Laser Beam Block	
	LRC	Servo-motors			20 Degree Switch	
	Console				Radome	
					LHRS FW	

- Depot Level Refurbishment, Standardized Configuration
- Improved Testing and Restricted Operational Modes
- MOBLAS servo system
 - Testing at NASA
- Event timer
 - Replaces time interval counter for all stations
 - Introduction 2014

- LADEE spacecraft Launched September 6, 2013
 - Lunar Atmosphere and Dust Environment Explorer
- Lunar Laser Ground Terminal
 - ILRS Engineering Station
 - White Sands New Mexico
 - 4ea 15 cm transmitting telescopes
 - 4ea 40 cm reflective receive telescopes

- Passively tracked AJISAI several times allowing identification and correction of software issues
- Actively tracked AJISAI to check boresight alignment
- Immediately communicated with LADEE spacecraft for successful demonstration: 622 MBps downlink

NASA SLR Network is functioning well

- Deployment of obsolete component replacements will reduce risk of major network decline near term
- Improvements in data quantity and quality are expected in 2014
- ILRS management and data analysis are functioning well
- Goals
 - Reduce risk of network downtime/failures by improving processes and proactively addressing obsolescence etc.
 - Improve data yield and quality
 - Event timer etc.
 - NASA DOC support ILRS daily data delivery with high proficiency

July 8 Wildfire Monument Peak, CA

PHOTO Courtesy of HPWREN

Please see our safety Poster!

Please see our safety Poster!

Please see our safety Poster!

