Consistent estimation of Earth rotation, geometry and gravity with DGFI's multi-satellite SLR solution

Mathis Bloßfeld¹, Vojtěch Štefka², Horst Müller¹, Michael Gerstl¹

¹Deutsches Geodätisches Forschungsinstitut (DGFI) Centrum für Geodätische Erdsystemforschung (CGE) Munich ²Astronomical Institute, Academy of Sciences of the Czech Republic email: *blossfeld@dgfi.badw.de*

18th International Workshop on Laser Ranging, 11.-15. November 2013, Fujiyoshida, Japan

GGOS aims

CGE

Geometry

 measuring the geometric shape of the Earth's surface and its kinematics & variations

Earth rotation

 monitoring the variations of the Earth's rotation as indicator of angular momentum and torques

Gravity field

- determining and monitoring the Earth's gravity field
- Highly-accurate and consistent reference frames are required to integrate the three pillars.

[acc. to Plag & Pearlman, 2009]

Interaction between the "pillars"

- **GGOS goal**: Consistent estimation of the Earth's geometry, the Earth's orientation and the Earth's gravity field and its temporal variations
- **problem**: High interaction between different parameter groups in a common adjustment (also complementary parameters!)

- **inter-technique solution:** Combination of observation techniques with different advantages (e.g. GNSS, SLR, VLBI, DORIS, GRACE, GOCE, ...)
- **intra-technique solution**: Combination of SLR observations to satellites with different orbit characteristics

Correlations I

• **sat 1**: high correlations between Earth gravity field, nodal precession, empirical cross-track accelerations and Earth rotation

Correlations II

18th Int. Workshop on Laser Ranging, 11.-15.11.2013

- sat 1 + sat 2: mixed inclinations are important to decorrelate Earth gravity field, satellite orbit and Earth rotation
- optimal mix would be the **butterfly configuration** $(I_1 90^\circ = 90^\circ I_2)$
 - ightarrow precession of nodes in opposite direction with the same velocity

Correlations III

- **sat 1**: high correlations between Earth gravity field, nodal precession, empirical cross-track accelerations and Earth rotation
- **sat 1** + **sat 2**: mixed inclinations are important to decorrelate Earth gravity field, satellite orbit and Earth rotation
- optimal mix would be the **butterfly configuration** $(I_1 90^\circ = 90^\circ I_2)$
 - ightarrow precession of nodes in opposite direction with the same velocity

Data I

Data II

- Observations are combined on the NEQ-level
- Weighting of NEQs is done via VCE
- LARETS, BLITS, BEACONC and STELLA get lower weights

Earth gravity field I

CGE

LAGEOS1

- low sensitivity on GFCs of degree > 3
- high correlations of low-degree GFCs with satellite orbit

Earth gravity field II

CGE

LAGEOS1/2

- stable estimation of GFCs of degree ≤ 4
- decorrelation of low-degree GFCs with satellite orbits due to mixed inclinations

Earth gravity field III

CGE

LAGEOS1/2 + STARLETTE

- stable estimation of GFCs of degree ≤ 6
- decrease of STD of tesseral GFCs
 - STARLETTE has slightly lower λ than LAGEOS1/2 \rightarrow high impact on GFC estimation

Earth gravity field IV

LAGEOS1/2 + ETALON1/2 + LARETS + STARLETTE + STELLA + AJISAI

- small STD of sectoral/tesseral GFCs up to degree ≤ 20
- zonal GFCs have higher STDs
 - resonances of LEOs allow to estimate GFCs of high degree

Earth gravity field V

weekly $\sigma^2(c_2)$ of DGFI (11 sat.) is smaller than monthly $\sigma^2(c_2)$ of CSR!

weekly / monthly global observation coverage

weekly solution

- poor observation distribution
- sometimes bad observation geometry due to station outage
- high weekly variability

monthly solution

- dense observation distribution
- good network geometry
- low monthly variability

Earth Orientation Parameter I

Earth Orientation Parameter II

Earth Orientation Parameter III

CGE

17

Earth Orientation Parameter IV

CGE

18

Terrestrial Reference Frame

CGE

RMS of translation / scale parameter w.r.t. SLRF2008

- Tx: -14 % (ILRS+LRS)
 -7 % (11 sat)
- Ty: -6 % (ILRS+LRS)
- Tz: -7 % (ILRS+LRS)
 -6 % (11 sat)
- Sc: +4 % (ILRS+LRS)
 +3 % (11 sat)

global mean coordinate WRMS

- north: -14 % (ILRS+LRS)
 -40 % (11 sat)
- east: -5 % (ILRS+LRS)
 -17 % (11 sat)
- height: -10 % (ILRS+LRS)
 -18 % (11 sat)

Summary

• Earth gravity field:

- mix of different satellite heights and resonances allows to estimate stable GFCs together with orbit parameters, TRF and EOPs
- the longer the arc length is, the smaller are the STDs of the estimated GFCs (well-determined GFCs up to d/o 20 with monthly (4 weeks stacked) solutions!)
- <u>EOP:</u>
 - > mix of different satellite inclinations allows to reduce the (UT1-UTC) systematics (decorrelation of gravity, orbit and Δ LOD)
 - The more satellites are combined, the smaller is the scatter of the pole coordinates
- <u>TRF:</u>
 - LARES helps to reduce the scatter of the transformation parameters & the global WRMS of the coordinates
 - with 11 satellites, the global WRMS is reduced by about 20-40 % w.r.t. the ILRS (LA1/2, ET1/2) solution

Bloßfeld M., Müller H., Gerstl M., Stefka V., Bouman J. (2013) Improved monthly Earth's gravity field solutions using multi-satellite SLR, J Geophys Res, submitted soon

Consistent estimation of Earth rotation, geometry and gravity with DGFI's multi-satellite SLR solution

Mathis Bloßfeld¹, Vojtěch Štefka², Horst Müller¹, Michael Gerstl¹

¹Deutsches Geodätisches Forschungsinstitut (DGFI) Centrum für Geodätische Erdsystemforschung (CGE) Munich ²Astronomical Institute, Academy of Sciences of the Czech Republic email: *blossfeld@dgfi.badw.de*

18th International Workshop on Laser Ranging, 11.-15. November 2013, Fujiyoshida, Japan

Relative weighting of satellites

 relative weighting using a variance component estimation (VCE) based on normal equations

$$N_c = \lambda_1 N_1 + \lambda_2 N_2 + \dots + \lambda_{10} N_{10}$$
 with $\lambda_i = \frac{1}{\sigma_i^2}$

satellite	σ_0^2 (TRF+EOP+GFC)	
LA1	3.8	
LA2	2.2	
ET1	8.6	
ET2	7.0	
STE	34.6)
STA	13.3	
AJI	12.9	
LTS	46.2)
LRS	12.9	
BTS	52.2)
BEC	163.0	\mathcal{D}
		-

- Estimation of TRF+EOP+GFC in one combined adjustment
- STE: sun-synchronus orbit
- LTS: very poor AMR
- BTS: new reflector type, low weight
- BEC: non-spherical shape appr. With spherical model

