

Optical FFDP and Interferometry measurement and modeling of GNSS retroreflector payloads at SCF_Lab

A. Boni¹, S. Dell' Agnello¹, C. Cantone¹, G. O. Delle Monache¹, E. Ciocci¹, S. Contessa¹,C. Lops¹, M. Martini¹, L. Palandra¹, G. Patrizi¹, L. Salvatori¹, M. Tibuzzi¹, R. Vittori^{3,1}, G. Bianco⁴, G. Capotorto^{1,2}, M. Marra^{1,2}, F. Piergentili^{1,2}, G. Bellettini², M. Maiello¹

¹ Laboratori Nazionali di Frascati (LNF) dell'INFN, Frascati (Rome), Italy ² University of Rome "Tor Vergata", Italy

³ Aeronautica Militare Italiana (AMI) and Italian Ministry of Foreign Affairs, Embassy of Italy,

300 Whiteheaven St. NW, Washington, DC 20008

⁴ASI, Centro di Geodesia Spaziale "G. Colombo" (CGS), Matera, Italy

18th International Workshop on Laser Ranging, Fujiyoshida (Japan) 14/11/20113

Outline

- GRA optical and mechanical design
- Orbital measurement at the SCF_Lab
- Galileo simulated orbit (GCO)
- ThermaOptiSim WP for ETRUSCO-2
- Optical simulations and comparison with measurements
- Comparison of linear and circular polarization
- Conclusions and future work

GNSS Retroreflector Array: GRA

- 55 uncoated retroreflectors
- Fused Silica (Suprasil 1) CCRs with 33 mm front face diameter with DAO = $3 \times (0.0' + 0.5')$
- Aluminum base
- Quasi circular shape
- Four azimuth orientations

DAO: Dihedral angle offset

SCF-Test of the GRA at the SCF_Lab

SCF_Lab measurements

- Far Field Diffraction Pattern (FFDP) measurement in Air of all 55 CCR
- SCF-Test
- Simulated orbital measurement

Introduced interferometric measurements from a commercial fizeau interferometer

Lab-simulated GCO SCF-Test

14-11-2013

GCO trace on CCR front face

GCO (GNSS Critical Orbit) is the orbit whose angular momentum is orthogonal to the Sun-Earth line of sight.

GCO SCF-Test

14-11-2013

ThermaOptiSim

Thermal and optical properties are closely connected in the analysis of CCRs performance.

14-11-2013

GRA FFDP simulation

- 33 mm circular front face aperture
- CCR with DAO = 3 × (0.0' ' ± 0.5 ' ' $GRA \ FFDP \ Intensity = 113 \cdot 10^6 m^2$
- velocity aberration ~24 µrad (Galileo IOV value)
- λ=532 nm
- horizontal polarization

• Intensity (Optical Cross Section) in 10⁶ m² units IOV: In Orbit Validation

GRA optical model in CodeV

$$n(z) = a_0 + a_1 z^4 + a_2 z^3 + a_3 z^2 + a_4 z$$

Introduced in each CCR the thermal perturbation and simulated the FFDP for each time step. Output is the evolution of average intensity over the orbit.

14-11-2013

GRA GCO simulated optical behaviour

GRA simulated FFDP variation

SCA

Linear vs Circular polarization

Conclusions and future work

- Completed a full SCF-Test campaign of the GRA.
- Integrated thermal/optical simulations describe single-CCR and GRA behaviours in orbit. Preliminary model in good progress.
- Laboratory measurements drive a fine tuning of thermal-optical simulations.
- Enhancements of modeling.
- GRA finite element model.

14-11-2013

- Introduction of a more general thermal gradient in CodeV model
- Test the effect of different laser inclinations
- Different orbits other than GCO (no Earth shadow, low Sun rays inclination..)

• Simulations show a benefit, in terms of intensity RMS, of a circular polarized laser beam.

Thank you for your attention. Any question?

alessandro.boni@Inf.infn.it