



## Status of the GPS III Laser Retroreflector Array

Dr. Linda M. Thomas, NRL Dr. Stephen M. Merkowitz, NASA GSFC

November 11-15, 2013 18th International Workshop on Laser Ranging "Pursuing Ultimate Accuracy & Creating New Synergies" Fujiyoshida, Japan



### Overview



- History
- Design considerations
  Link Budgets
- Corner Cube Selection
- Risk Reduction Work
- Flight Qualification Model Development
- Schedule



# History



- 1993 GPS Laser Retroreflector Experiment\*
  - Agreement between NRL, NASA GSFC, University of Maryland, USAF, and GPS Joint Program Office to fly a laser retroreflector array payload on vehicles 35 and 36
  - NRL approved to integrate the LRA through the "Advanced Clock Ranging Experiment" funded by Office of Naval Research. Goal to provide an independent high-precision measurement to compare or calibrate the GPS pseudorange signal.
- 2006 US Civil and DoD working group identifies requirements to meet future geodesy and science needs
  - Laser Ranging identified as a key technique to account for systematic errors in satellite coordinates and reference frames
- 2012 Multiagency group studied requirements and concluded room is available for an LRA on the nadir deck
- 2012 Naval Research Laboratory commences trade studies, analysis and design of the future GPS III Laser Retroreflector Array
- 2013 Official agreement signed between agencies to install laser retroreflector arrays on GPS Block III satellites starting with vehicle 9
- 2014 Completion of flight qualification model of the GPS III Laser Retroreflector Array



#### **Design Considerations**





#### Tracking Mission

- Day/Night
- Elevation



<u>Fundamental</u>

- Velocity Aberration
- Link Budgets



Space Vehicle

- Interfaces
- Environment

LRA design driven by multiple sources



## **Link Budgets**





For reference, see: J. Degnan's 1993 paper:

http://ilrs.gsfc.nasa.gov/science\_analysis/docs/degnan/Milimeter/MillimeterAccuracySatelliteLaserRangingReview.pdf Mark Davis, "Performance and Prediction of SLR Tracking on Regional GNSS Constellations", Frascati, 2012



#### Where is the LRA used?





LRA optimized across various geometries, with emphasis on supporting lower elevation tracking (<40 deg)





#### **NASA Greenbelt Link Budget**







- Galileo data (red) for the 1<sup>st</sup> half of 2012
- Green indicates projected SLR GPS III link budget based on MOBLAS-4 station historical catch/fire ratio

56200







0 1 4 9 8 0 1 4 9





- Galileo data (red) for the 1<sup>st</sup> half of 2012
- Green indicates projected SLR **GPS III link** budget based on Yarragadee station historical catch/fire ratio



#### **Corner Cubes**



- Considerations:
  - Optical performance
    - Horizontal and circular polarizations
  - Manufacturability & tolerancing
  - Orbit constraints
    - Radiation environment, survivability
- Extensive simulations completed for 1.0 to 1.9 inch aperture uncoated cubes
  - 0.0 to 1.0 arcsec spoiling at 0.1" steps
  - Linear and circular excitation lasers
  - Incident angles: 0 deg, nominal (7 deg), and worst case (14 deg)
  - Thousands of diffraction patterns generated in ZEMAX optical design software
  - Evaluation at the working annulus
  - Validation with Legacy Analysis Codes
- 1.6 inch cube chosen
  - Provides >100MSM cross section with 48 CCRs
  - Using antireflection coating on front surface to improve link budget at 532nm







## LRA Risk Reduction Work



- Designed a 7-aperture subarray
  - Incorporate mission, SLR, and vehicle requirements
- Fabricate and test subarray
  - Evaluate mechanical performance
  - Validate assembly methods
  - Ensure EMI/EMC compatibility





# **Full Flight Array and Cross Section**



| Cubes     | Wavelength | Orientation | Polarization | Cross Section |
|-----------|------------|-------------|--------------|---------------|
| 48 x 1.6" | 532nm      | 0 deg       | Horizontal   | 140MSM        |
| 48 x 1.6" | 532nm      | 0 deg       | Circular     | 155MSM        |
| 48 x 1.6" | 532nm      | 12 deg      | Horizontal   | 105MSM        |
| 48 x 1.6" | 532nm      | 12 deg      | Circular     | 120MSM        |

- Cube selection supports ILRS GNSS cross section specification
- FFDPs validated in Zemax
- On and off-axis performance evaluated



Rendering of flight model



# LRA and Mission Information



- We are working with GPS program office to ensure sufficient detail will be released to the community to support reference frame accuracy improvements
- This information is expected to include:
  - Location of SV center of mass before launch
  - Location of the LRA on the SV
  - Optical phase center to CoM
  - Corner cube specification (DAO, flatness, etc)
  - Corner cube material
  - Coating specification
- Given the large number of LRA-equipped GPS satellites and to ensure maximum data utility, all tracking will be pre-coordinated with NASA



# Schedule



- Risk reduction work completed
- Fabrication of the flight qualification model underway
- Environmental testing of qualification model in late 2013
- Flight check with SV integrator in 2014
- Launch of first vehicle equipped with GPS III LRA no earlier than 2019



#### **Contributions from Mr. Mark Davis**













# Thank you!



