

New laser retroreflector arrays

- 1. Luna's array (production stage)
- 2. Ring retroreflector array (RRA) for GLONASS (design stage)

Goals:

- correction reduction of measurement results;
- cross-section increase;
- solar heating minimization.

Luna's array for "Luna-Glob"

Basic characteristics:

- 1. Standard CCRs: 28 mm; DAO: 0.
- 2. Interference dielectric coatings for reducing of solar heating influence and losses.
- 3. Compact array of 19 CCRs.

The experimental array

$$CS = (2, 3 - 2, 5) \cdot 10^8 \,\mathrm{m}^2$$

Mass < 1 kg

New interference CCR coatings

$$\delta_s - \delta_p = f(h_i, N, n_i, \theta_i)$$

Al-coatings CCRs

Dielectric-coatings CCRs

CS $(\cdot 10^6 \text{ m}^2)$ 10 5 2" 4" 6" 8" diffraction angle

Basic ideas:

- 1. Increased aperture CCRs: 42 48 mm
- 2. DAO: 2" 3" (single DA)
- 3. Interference dielectric coatings for reducing of solar heating influence
- 4. Orientations of two-spot FFDP along the radius of RRA

Optimization of LR-array configuration

CCRs with different DAO. Diameters: 28 mm and 50 mm

DAO	Equivalent diameter - 28 mm		Equivalent diameter - 50 mm	
	One CCR	36 CCRs	One CCR	36 CCRs
2,2″	ها، قار ا قار قار			\cdot
2,4″				
2,6″				0

Influence of incidence angle on two-spots CCRs

10

CCRs with DAO + coatings. Diameter 48 mm. Dihedral angle 2,4"

The RRA of 36 two-spot CCRs

5 CCR's from opposite sides act for definite orbit's orientation

12

Ring TIR-CCR array for GLONASS (K)

Standard deviation

	$\theta = 5^{\circ}$	$\theta = 10^{\circ}$	$\theta = 15^{o}$
50 ps	16 mm	31 mm	46 mm
100 ps	19 mm	33 mm	47 mm

R = 230 mmd = 28 mm

Incident pulse

Envelops of reflected pulse

 $2\tau = 50 \text{ ps}$

Ring two-spot CCR array for GLONASS

Standard deviation

	$\theta = 5^{\circ}$	$\theta = 10^{\circ}$	$\theta = 15^{\circ}$
50 ps	8 mm	8 mm	8 mm
100 ps	16 mm	16 mm	16 mm

Incident pulse

 $2\tau = 50 \text{ ps}$

 $2\tau = 100$ ps

Thus, new technical and technological solutions:

- dielectric interference coatings of CCRs;
- ring retroreflector array, composed by twospot increased CCRs

provide significant increase of cross-section with same mass, decrease of solar heating influence and get a higher laser ranging accuracy for navigation satellites.

Thank you for your attention!

