
Real-Time Linux at MLRS 	

Randall L. Ricklefs 

The University of Texas at Austin / Center for Space Research 
Contact: ricklefs@csr.utexas.edu

Abstract
The McDonald Laser Ranging Station (MLRS) has used a proprietary, unix-like real-time
operating system to control tracking, ranging, and timing for 2 decades. With the
availability of a 7 year duration Long Term Support version of Ubuntu Linux, as well as
the Real Time Application Interface (RTAI) and Real Time Device Driver interface
(RTDM) add-ons for real-time control, an opportunity presented itself to convert to a
stable, modern, open-source alternative. We will review the architecture and development
of this system and describe recent experience with its installation and operation.

Conclusion
The conversion from LynxOS to RTAI/Linux at MLRS was a low priority/ low risk venture that
bore fruit after a couple years of part time work. To gain experience and control, the project was
broken up into several phases, each getting closer to the goal of real-time response. Although the
learning curve for RTAI and RTDM was challenging, it was comparable to other unfamiliar
libraries. Now that the real-time Linux software is in place, it provides an effective, low cost,
stable, and tool-rich environment for further development and maintenance.	

References
[1] Ricklefs, R., Check, J., McGarry, J.F., "Upgrading NASA/DOSE Laser Ranging System Control
Computers", 8th International Workshop on Laser Ranging, Annapolis, MD USA, May 18-22, 2002.
[2]Hoffman, E., Ricklefs, R, Controlling Laser Ranging with RTAI-based Real-Time Linux, 17th
International Workshop on Laser Ranging, Bad Kötzting, Germany, May 16-20, 2011.
[3] https://github.com/cjpl/midas/tree/master/drivers/kernel/khyt1331_24 .
[4] RTAI Installation Complete Guide, Joao Monteiro, Feb 27, 2008, from www.rtai.org .
[5] RTAI 3.4 Users Manual, rev 0.3, October 2006, from www.rtai.org .
[6] Linux for Embedded and Real-time Applications, D. Abbott, Elsevier, 2006.

Introduction
 In the early 1990's, MLRS as well as the rest of the NASA SLR network converted

their real-time ranging control computers from a set of disparate minicomputers to commodity
PCs running the Unix-like real-time operating system LynxOS. Real-time functionality was
needed to service interrupts in various subsystems in a timely fashion. After a market survey,
there were only a couple of affordable contenders that provided a portable interface using POSIX
and X11 libraries to provide a real-time platform with a portable graphical user interface. [1]
Recently, as LynxOS became more expensive for one station (we are no longer able to share a
development environment with the rest of the NASA network), we needed to find a viable
alternative.

 We have had a great deal of experience working in a Linux environment, and
became acquainted with the various open source real-time options for Linux. Ultimately, RTAI
(Real Time Application Interface) was chosen.[2] It includes patches to the Linux kernel and
supplies a set of real time libraries and schedulers. Later, when it became clear that the device
driver for our primary bus system (CAMAC) needed to have real-time capability, we also
adopted RTDM (Real Time Device Model). This is a library of wrapper routines to make writing
a real-time device driver simpler and more transportable between real time implementations like
RTAI and Xenomial.

 The chosen Linux distribution, after experimenting with a couple others [2], is
Ubuntu 12.04 LTS. The boot and shutdown times are shorter than for most of the others
distributions, and this version will be supported with security and bug patches until 2017. Shorter
boot times help if the system must be rebooted during a pass, and the long term support will
insure that the system will remain safely patched for some years – and time will not need to be
spent upgrading to a newer distribution every 12-18 months.

 The architecture of the software remains the same for the Linux version as for the
LynxOS version. There is a multi-threaded main program, called the Monitor, that handles all
interactions with the station hardware – mount, timing, ranging hardware, meteorological
sensors, xy stage, and so forth. This program forks several other programs, only one of which can
be active at a single time, and communicates with them through shared memory. These are the
star calibration program, the satellite tracking program, and programs to calibration the TD811
ranging timer and the absolute and incremental encoders. Each of these programs is also multi-
threaded. All were converted for real time use with RTAI. All programs are written in c, and
heavy use is made of the X11/Motif graphical user interface libraries.

 This conversion was undertaken as a low priority project without interference with
the usual ranging activities. There were 3 phases to creating the real-time Linux controller
system. Each brought us closer to a real-time response.
Production Experience

 The Linux real-time system has been in use at MLRS since late August, 2013.
Observer training took little time, since there is virtually no difference in the graphical user
interface of the ranging programs. In addition, the Linux desktop environment is familiar to the
observers because the data analysis computer also runs Linux. Instead of launching the Monitor
program from the root window menu under LynxOS, the observer double clicks an icon on the
desktop.

 Weather and some software problems limited the number and quality of passes
taken early on. Later, a couple of annoying problems in the software that proved to limit data and
frustrate the observers were remedied, and tracking is now proceeding normally. These problems
involved identifying lost interrupts and limiting their detrimental effects. Although the problem
of missed interrupts is not new to this real time Linux implementation, there may still be some
tuning of the RTAI/Linux ranging code that can further reduce them.

 Although Ubuntu boots fairly quickly compared to other distributions, it is slower
than LynxOS. If there are software or hardware glitches that require a reboot in the middle of a
pass, added time rebooting can be frustrating for the operators and can result in the loss of data.
To mitigate this slowness, the hard disk drive was replaced with a 240GB Solid State Drive
(SSD). The boot time was cut almost in half, and is comparable to LynxOS boot times.

 The choice of desktop environment is evolving. Only a fairly simple desktop is
needed to launch the ranging programs and carry out system administration. Production use
started with Gnome Classic. This has a bug which often prevents shutdown and reboot from the
usual desktop menus. The XFCE desktop may be used in its place.

Working with RTAI/RTDM

 As is often common when beginning to use a library that is new to the programmer,
a fair amount of experimentation was required to learn what set of commands perform the
required task, and RTAI and RTDM are no exceptions. The learning curve for RTAI/RTDM was
substantial, mainly because there is no up-to-date or in-depth instructional book. Everything that
is available is on the web, although RTAI is discussed in one programming book[6]. Much of the
HOWTO and User Manuals, though quite useful, are somewhat out-of-date. Some
documentation comes from an earlier era before the product was mature, leaving the reader to
wonder about the current state and procedures. However, the RTAI web site has excellent and up-
to-date API (Application Programming Interface) documentation. There is also a wealth of
working code on the RTAI and related web-sites. An active RTAI forum and archive provide
needed access to RTAI expertise. If a question isn't answered in the archive or elsewhere, a query
to the forum will bring a quick response.

System Development

Phase 1 ‒ Conversion from LynxOS to Linux

 Converting the c code from LynxOS version 4.2 to Linux was a straight forward task.
The main changes were due to differences in header names, such as replacing #include <shm.h> with
#include <sys/shm.h>; absence of certain defines, such as SIGUDEF29; and the addition of certain
headers. Other minor changes were due to the serial port device names for the Blue Heat 8250 PCI 8-
port serial board. The serial devices are named, for example, /dev/ttyS1 (CentOS) or /dev/ttyCTI0
(Ubuntu), instead of /dev/cbh0.0 for LynxOS. In the code that initializes serial ports, the define
“V_B9600” was replaced with “B9600”. Also, a call to cfsetispeed and cfsetospeed were needed to
set the baud rate.

 The big change was replacing the CAMAC kernel device driver and its interface in the
user space controller program (Monitor). MLRS (and the rest of the NASA network) uses the Hytec
CAMAC TURBO Personal Computer Interface Type 1331 (which takes up 2 slots in the CAMAC
crate) and the Hytec PCI5331 PCI “personality card”, which fits in a slot in the controller computer.
The Linux device driver and user space interface library, written by Stefan Ritt, was downloaded and
installed [2]. The LynxOS device driver used an ioctl call in user space to wait for interrupts. This
Linux driver uses an interrupt service routine in user space to wait for kernel driver interrupts
(triggered by kernel level “wake_up_interruptible” and “kill_fasync” calls).

Phase 2 ‒ Adding real-time support into user space

 The Linux-only version worked, but failed, as expected, in guaranteeing deterministic
response times. Next came installing RTAI kernel patches and libraries following the setup guidelines
[4] and users manual[5]. This involved downloading RTAI 3.6 (available from rtai.org and through
the Ubuntu Software Manager) and a compatible generic kernel from kernel.org. The latest kernel that
was supported by RTAI 3.6 was 2.6.32.59, and is used here.

 The test suite that accompanies RTAI shows quite good performance in kernel space
tests, with about 5 µsec maximum latency and 4 µsec preemption latency. As expected, the user space
tests were not as good, with 21 µsec maximum latency and 12 µsec preemption latency. There may be
some “latency killers” that have not yet been located. These results were obtained using our existing
controller computer, a Dell Precision 380 with a 3.2 GHz Pentium 4.

 Once RTAI was installed, the process of replacing or augmenting Linux system calls
with RTAI routines began. A little functionality was added each time until a usable system emerged.
There are 2 real-time flavors, soft and hard. Soft real-time has better characteristics than the typical
Linux scheduling, but not deterministic enough for critical applications. Hard read-time is used in
portions of the code where there are critical timing needs, such as interrupt or timer handling. The key
is to avoid page swaps and Linux system calls within the hard real-time portion of any thread. Each
real-time thread needs to be locked into memory with adequate memory so that it does not try to grow
and therefore cause a time-consuming page-fault. A helper thread is then created to interact with the
RTAI scheduler.

 As it turns out, the downfall of this approach was that the CAMAC driver interrupts
and calls were not set up for hard real time. That brings us to the final phase.

Phase 3 ‒ Adding real-time support into kernel space ‒ the CAMAC device driver

 The only device in our ranging system that requires hard real time responses to
interrupts is the CAMAC crate. The CAMAC contains the system clock and the ranging timer, both of
which produce interrupts which must be serviced immediately. The meteorological system and XY
stage, both attached to serial ports, do not have time-critical response requirements. As mentioned
above, the modules in the CAMAC crate are accessed through a Hytec 1331 CAMAC module and a
5331 PCI card. Initially the open source device driver and wrapper libraries described above were
used. However, while these are fine for low speed work, the response time was inadequate for our
laser ranging system. Thus, it was necessary to convert this kernel-level driver to real time using
RTAI and RTDM techniques and calls. Almost all CAMAC services, including interrupts, are
accessed through ioctl calls, similar to the LynxOS technique. Once this conversion was
accomplished, ranging tests could begin.

It should be noted that since the MLRS is 500 miles away from the software developer in Austin, and
since no spare CAMAC hardware is available, initial development in each of these steps required
using a CAMAC device driver that simulated, to some crude extent, the response of the real hardware.
Creating this driver required different techniques from those in the operational driver, further
distracting from the job at hand.

Poster design: Judit Györgyey Ries, The University of Texas/McDonald Observatory

Article
13-Po25

MLRS

Old
versus

New environment

