Atmospheric range correction for two-frequency SLR measurements

Dudy D. Wijaya¹, Fritz K. Brunner², Johannes Böhm¹, Harald Schuh¹

¹ Institute of Geodesy and Geophysics, Vienna University of Technology, Austria ² Institute of Engineering Geodesy and Measurement Systems, Graz University of Technology, Austria

> 17th International Workshop on Laser Ranging Bad Kötzting, Germany, May 16 - 20, 2011

1. Previous atmospheric correction formula for 2F-SLR

$$S = R_{1} + V(R_{1} - R_{2})$$
$$v = \frac{k_{d}(f_{1})}{k_{d}(f_{2}) - k_{d}(f_{1})}$$

 $R_1 \& R_2$: SLR measurements k_d : Dispersive constant

Limitations:

- Neglecting water vapor and curvature/bending effects
- A millimeter level of accuracy for the range correction is hard to achieve
- Within the framework of GGOS, the standard model needs to be improved

(Abshire & Gardner, 1985)

2. New formula: Extension of the previous formula

$$S = R_{1} + v(R_{1} - R_{2}) + (vP_{21} - K_{1}) + H_{21}SIWV$$

$$T_{1}: \text{ dispersion (observed)} \quad T_{2}: \text{ curvature (modeled)} \quad T_{3}: \text{ water vapor (observed)}$$
previous formula

- Geometrical optics approximation
- The new formula considers all of the atmospheric propagation effects, except turbulence

dispersive power

water vapor factor

slant integrated water vapor

$$v = \frac{k_d(f_1)}{k_d(f_2) - k_d(f_1)} \qquad H_{21} = 10^{-6} k_v(f_1) v \left(\frac{k_v(f_2)}{k_v(f_1)} - \frac{k_d(f_2)}{k_d(f_1)}\right) \qquad \text{SIWV} = \int_{p_1} \rho_v \, ds_1$$

Propagation correction

arc-to-chord correction

$$P_{21} = \int_{p_2} n(r_2, f_2) ds_2 - \int_{p_1} n(r_1, f_2) ds_1$$

 $K_1 = \int_{p_1} ds_1 - S$

(Wijaya & Brunner, 2011)

2. New formula: Magnitude of the corrections simulated by ray-tracing

2. New formula: Magnitude of the corrections simulated by ray-tracing

2. New formula: Comparison with the previous formula

Residual range error (RRE)

RRE = $|S_{formula} - S_{ray-tracing}|$

2. New formula: Precision requirements

$$S = R_1 + v(R_1 - R_2) + (vP_{21} - K_1) + H_{21}SIWV$$

Parameter	Precision	Method/Model
R ₁ - R ₂	8 µm	Observable ??
R_1	1 mm	Observable
P ₂₁ , K ₁	1 mm	Accurate model
SIWV	6 kg/m²	Accurate model, GNSS

The values of v and H_{21} for various SLR frequencies

$$v = \frac{k_d(f_1)}{k_d(f_2) - k_d(f_1)} \qquad H_{21} = 10^{-6} k_v(f_1) v \left(\frac{k_v(f_2)}{k_v(f_1)} - \frac{k_d(f_2)}{k_d(f_1)}\right)$$

$$= 8 - 30 \qquad = 1.3 \times 10^{-4} \sim 1.7 \times 10^{-4} \text{ m}^{3}/\text{kg}$$

3. Calculation for elevation above 10°: Curvature effect K_1

...depends only on K_1 (bending effect)...

Two-year mean & std of K_1

El (º)	K_{1} (mm)		
	Graz	TIGO	
10	23.6 ± 0.7	27.2 ± 0.6	
15	7.5 ± 0.2	8.6 ± 0.2	

- K_1 does not vary significantly during a year
- A simple model relating K₁ with elevation angle can be easily developed
- The model is independent of time

3. Calculation for elevation above 10°: Integrated water vapor

$$S = R_{1} + v(R_{1} - R_{2}) + (vP_{21} - K_{1}) + H_{21} \frac{SIWV}{\swarrow}$$
$$siwv = \int \rho_{v} ds$$

...accuracy 6 kg/m²...

Results from optical delay modeling

- Zenith wet delay model and Mendes-Pavlis mapping functions (Mendes et al., 2002; Mendes & Pavlis, 2004)
- Ray-tracing through numerical weather model (Hulley & Pavlis, 2007)

Results from microwave measurements

$$\textit{SIWV} ~\approx \frac{1}{10^{-6}k_3 R_{\nu} \left(\frac{1}{\overline{T}} + k_5\right)} ~\textit{SWD}_{\textit{microwave}}$$

Techniques for obtaining SWD_{microwave}:

- Microwave measurements: GNSS, Water Vapor radiometer, VLBI
- ECMWF provided with VMF1 (Boehm et al., 2006)

4. The VMF1 for correcting optical delays of SLR measurements

Vienna Mapping Function (Boehm et al., 2006):

- The VMF1 was originally developed for correcting atmospheric propagation effects in microwave measurements
- The coefficients of the VMF1 as well as the (microwave) zenith hydrostatic and wet delays are determined 6-hourly

The VMF1 for correcting optical delays of two-frequency SLR measurements

SWD_{microwave} = ZWD_{microwave} x VMF1

The VMF1 for correcting optical delays of single-frequency SLR measurements

$$SWD_{optic} = ZWD_{microwave} \times C_{v}(f) \quad VMF1$$
$$SHD_{optic} = ZHD_{microwave} \times C_{h}(f) \quad VMF1$$

- Scaling factors C_v(f) and C_h(f) depend on the dispersion constants of optical frequency
- The scaling factors can be determined empirically by ray-tracing
- Rigorous determination can be accomplished by reformulating the mapping functionformula as a function of the density and dispersion constants

5. Summary and conclusions

- A new atmospheric correction formula for two-frequency SLR measurements has been developed
- •The new formula improves the previous formula by adding two terms for calculating curvature effects and water vapor distribution
- The curvature effect can be determined by a simple model
- The water vapor effect can be determined by results from optical delay modeling or from microwave measurements
- Requirement accuracy for two-frequency SLR measurements exceeds by far the capability of current state of the art SLR system

The work presented here has been published in Journal of Geodesy:

Dudy D. Wijaya and Fritz K. Brunner (2011), *Atmospheric range correction for two-frequency SLR measurements*, J. Geod., doi 10.1007/s00190-011-0469-8.

