Atmospheric range correction for two-frequency SLR measurements

Dudy D. Wijaya¹, Fritz K. Brunner², Johannes Böhm¹, Harald Schuh ${ }^{1}$
${ }^{1}$ Institute of Geodesy and Geophysics, Vienna University of Technology, Austria
${ }^{2}$ Institute of Engineering Geodesy and Measurement Systems, Graz University of Technology, Austria

[^0]
1. Previous atmospheric correction formula for 2F-SLR

$$
\begin{aligned}
& \boldsymbol{S}=\boldsymbol{R}_{1}+\boldsymbol{\nu}\left(\boldsymbol{R}_{1}-\boldsymbol{R}_{\mathbf{2}}\right) \\
& v=\frac{k_{d}\left(f_{1}\right)}{k_{d}\left(f_{2}\right)-k_{d}\left(f_{1}\right)} \\
& R_{1} \& \boldsymbol{R}_{2}: \text { SLR measurements } \quad k_{d}: \text { Dispersive constant }
\end{aligned}
$$

Limitations:

- Neglecting water vapor and curvature/bending effects
- A millimeter level of accuracy for the range correction is hard to achieve
- Within the framework of GGOS, the standard model needs to be improved

2. New formula: Extension of the previous formula

$$
\begin{aligned}
& S=R_{1}+v\left(R_{1}-R_{2}\right)+\left(v P_{21}-K_{1}\right)+H_{21} S I W V \\
& \mathrm{~T}_{1} \text { : dispersion } \quad \mathrm{T}_{2} \text { : curvature } \quad \mathrm{T}_{3} \text { : water vapor } \\
& \text { (observed) (modeled) (observed) }
\end{aligned}
$$

- Geometrical optics approximation
- The new formula considers all of the atmospheric propagation effects, except turbulence
dispersive power
water vapor factor
$v=\frac{k_{d}\left(f_{1}\right)}{k_{d}\left(f_{2}\right)-k_{d}\left(f_{1}\right)}$

Propagation correction

$$
P_{21}=\int_{p_{2}} n\left(r_{2}, f_{2}\right) d s_{2}-\int_{p_{1}} n\left(r_{1}, f_{2}\right) d s_{1}
$$

arc-to-chord correction

$$
K_{1}=\int_{p_{1}} d s_{1}-S
$$

2. New formula: Magnitude of the corrections simulated by ray-tracing

2. New formula: Magnitude of the corrections simulated by ray-tracing

2. New formula: Comparison with the previous formula

- Residual range error (RRE)

RRE $=\left|S_{\text {formula }}-S_{\text {ray-tracing }}\right|$

2. New formula: Precision requirements

$$
S=R_{1}+v\left(R_{1}-R_{2}\right)+\left(v P_{21}-K_{1}\right)+H_{21} S I W V
$$

Parameter	Precision	Method/Model
$R_{1}-R_{2}$	$8 \mu \mathrm{~m}$	Observable ??
R_{1}	1 mm	Observable
P_{21}, K_{1}	1 mm	Accurate model
SIWV	$6 \mathrm{~kg} / \mathrm{m}^{2}$	Accurate model, GNSS

The values of v and H_{21} for various SLR frequencies

$$
\begin{aligned}
v & =\frac{k_{d}\left(f_{1}\right)}{k_{d}\left(f_{2}\right)-k_{d}\left(f_{1}\right)} & H_{21} & =10^{-6} k_{v}\left(f_{1}\right) v\left(\frac{k_{v}\left(f_{2}\right)}{k_{v}\left(f_{1}\right)}-\frac{k_{d}\left(f_{2}\right)}{k_{d}\left(f_{1}\right)}\right) \\
& =8-30 & & =1.3 \times 10^{-4} \sim 1.7 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{kg}
\end{aligned}
$$

3. Calculation for elevation above 10° : Curvature effect K_{1}

$$
\begin{gathered}
S=R_{1}+v\left(\boldsymbol{R}_{1}-\boldsymbol{R}_{2}\right)+\frac{\left(v \boldsymbol{P}_{21}-K_{1}\right)}{}+\boldsymbol{H}_{21} S I W V \\
v P_{21}-K_{1} \approx-\left(v\left[1-\frac{k_{d}\left(f_{2}\right)}{k_{d}\left(f_{1}\right)}\right]^{2}+1\right) \boldsymbol{K}_{1}
\end{gathered}
$$

...depends only on K_{1} (bending effect)...

Two-year mean \& std of K_{1}

El ($\left.{ }^{\circ}\right)$	$K_{1}(\mathrm{~mm})$	
	Graz	TIGO
10	23.6 ± 0.7	$27.2 \pm \mathbf{0 . 6}$
15	7.5 ± 0.2	8.6 ± 0.2

- K_{1} does not vary significantly during a year
- A simple model relating K_{1} with elevation angle can be easily developed
- The model is independent of time

3. Calculation for elevation above 10° : Integrated water vapor

$$
\begin{array}{r}
S=R_{1}+v\left(R_{1}-R_{2}\right)+\left(v P_{21}-K_{1}\right)+H_{21} \underline{S I W V} \\
\text { SIWV }=\int \rho_{v} d s \\
\ldots \text {..accuracy } 6 \mathrm{~kg} / \mathrm{m}^{2} \ldots
\end{array}
$$

Results from optical delay modeling

- Zenith wet delay model and Mendes-Pavlis mapping functions (Mendes et al., 2002; Mendes \& Pavlis, 2004)
- Ray-tracing through numerical weather model (Hulley \& Pavlis, 2007)

Results from microwave measurements

$$
\mathbf{S I W V} \approx \frac{1}{10^{-6} k_{3} R_{v}\left(\frac{1}{\bar{T}}+k_{5}\right)} \boldsymbol{S W D}_{\text {microwave }}
$$

Techniques for obtaining $S W D_{\text {microwave }}$:

- Microwave measurements: GNSS, Water Vapor radiometer, VLBI
- ECMWF provided with VMF1 (Boehm et al., 2006)

4. The VMF1 for correcting optical delays of SLR measurements

Vienna Mapping Function (Boehm et al., 2006):

- The VMF1 was originally developed for correcting atmospheric propagation effects in microwave measurements
- The coefficients of the VMF1 as well as the (microwave) zenith hydrostatic and wet delays are determined 6-hourly

The VMF1 for correcting optical delays of two-frequency SLR measurements

$$
S W D_{\text {microwave }}=Z W D_{\text {microwave }} \times \text { VMF1 }
$$

The VMF1 for correcting optical delays of single-frequency SLR measurements

- Scaling factors $C_{v}(f)$ and $C_{h}(f)$ depend on the dispersion constants of optical frequency
- The scaling factors can be determined empirically
by ray-tracing
- Rigorous determination can be accomplished by
reformulating the mapping functionformula as a function
of the density and dispersion constants

5. Summary and conclusions

- A new atmospheric correction formula for two-frequency SLR measurements has been developed
-The new formula improves the previous formula by adding two terms for calculating curvature effects and water vapor distribution
- The curvature effect can be determined by a simple model
- The water vapor effect can be determined by results from optical delay modeling or from microwave measurements
- Requirement accuracy for two-frequency SLR measurements exceeds by far the capability of current state of the art SLR system

The work presented here has been published in Journal of Geodesy:
Dudy D. Wijaya and Fritz K. Brunner (2011), Atmospheric range correction for two-frequency
SLR measurements, J. Geod., doi 10.1007/s00190-011-0469-8.

[^0]: 17 ${ }^{\text {th }}$ International Workshop on Laser Ranging
 Bad Kötzting, Germany, May 16-20, 2011

