

Overview

- Signal Level of the LLRRA-21 Compared to Apollo 15
 - Intuitive Estimate
 - Simulation of Return
 - Thermal Estimation Procedure
 - Simulation Result for Return and Comparison to A15
- Lifetime limitations
 - Three Candidates
 - Electrically Lofted Dust Perhaps, but No Defendable Model Yet
 - Direct Impacts of Micrometeorites onto Front Face of CCR
 - Secondary Ejecta from Micrometeorites Impacting Regolith
- Ground Station Hardware
 - Requirements
 - Detector
 - Short Pulse Laser
 - Electronics
- ESO

ILRS Workshop 16 – 20 May 2011

Role of LLRRA-21

Future Goal

- Much Greater Accuracy for Better Science by 200
- Immediate Problem
 - Today, for 1 mm, only APOLLO Can Reach This
 - Only A Few Observations / month
- Immediate Goal
 - ~ 1 mm Precision with a Few Returns
 - With a Return ~ like Apollo 15
 - Multiple Stations, Similar in Capability to McDonald

Intuitive Estimate

• 100 mm vs. 38.1 mm - Fourth Power - on Axis - LLRR-21 Stronger by 47 for a Single CCR Apollo 15 has 300 CCRs - LLRRA-21 Only 14% of A15 Return But this Addresses a Brand New A15 - From Murphy's APOLLO Measurement - 9.6 - LLRRA-21 Stronger by 20% But Need to Address Velocity Aberration

Thermal Analysis

ILRS Workshop 16 – 20 May 2011

Signal Degradation

- Results from the APOLLO Station
 - Very Significant Reduction in the Signal
 - Overall 10% of expected Return
 - ~1% for the Sun at Zenith
- Must Learn Source to Prevent with LLRA-21
- Candidates for Causing Degradation
 - Lofted Dust
 - Direct Micrometeorite Impact
 - Secondary Ejecta of Micrometeorites Hitting Regolith

16 - 20 May 201⁻

Direct impact

- Dust accelartyor

 Description
 Layout from CCLDAS
 Photograph

 Observations

 Few thousand impacts
 - Images of Individual Damage Craters

16 - 20 May 2011

Dust Accelerator University of Colorado Fused Silica Witness Plates

SEM Images of Dust Impacts

Reflector Degradation

What's Wrong?

- The full-moon deficit, together with normal eclipse behavior, gives us the best clues:
 - thermal nature
 - absorbing solar flux
- Most likely: dust
- Obviously could explain overall deficit (10%)
- Full moon effect then due to solar heating of dust
 - sun comes straight down tube at full moon
 - makes front hotter than vertex of corner cube, leading to divergence of exit beam
 - only takes 4 °C (7 °F) gradient to introduce 10× reduction

Cartoon of Expectations

13

Preliminary Eclipse Results

robust recovery initially, then down, and brief resurgence once light returns

LLRRA-21 PACKAGE

Sun/Dust-Shade

16 - 20 May 2011

- Sun/Dust-Shade
 - Thermal Blocks Sunlight
 - Dust Blocks Dust Flux
 - Micrometeorite Blocks Dust Impacts
- Reduces open aperture
 - Access is Reduced by a factor of 200
- Performance
 - Good Thermal Performance
 - Only One Impact/Century
 - Dust at less than 1% /40 years

LUNAR SURFACE EMPLACEMENT

- CCR Optical Performance at Sub-Micron

 Want to Assure as Much of This as Possible
- We Have Sufficiently Strong Return
- Emplacement Issues Diurnal Heating of Regolith
 ~ 400 Microns of Lunar Day/Night Vertical Motion
- Solutions Dual Approach for Risk Reduction
 - Drill to Stable Layer and Anchor CCR to This Level
 - ~ one meter Apollo Mission Performed Deeper Drilling
 - ~ 0.03 microns of motion at this depth
 - Stabilize the Temperature Surrounding the CCR
 - Multi Layer Insulation Thermal Blanket 4 meters diameter
 - Support Rod Sees a Constant Temperature Environment

ROBOTIC DEPLOYMENT

- Deployment Methods
 - Lander Mounting
 - Few Millimeters
 - Thermal Expansion of Lander during Lunation
 - Surface Deployment
 - Sub-Millimeter
 - Regolith Expansion during Lunation
 - Anchored Deployment
 - Tens of Microns

ILRS Workshop 16 – 20 May 2011

SURFACE DEPLOYMENT

Issues

- CCR Should Point Toward Earth "Center"
- Maintain Clocking Angle to Handle Sun Breakthrough
- Handle Longitudinal (toward earth) Tilt of Surface
- Handle Azimuthal Tilt of Surface
- Requirements
 - Self Orienting Procedure to Keep Clocking Angle
 - Longitudinal (Elevation) Self Orientation
 - Azimuth Angle Adjusted by Arm
 - Calibrated by Goniometer (Sun Dial)

ROBOTIC DEPLOYMENT Surface Deployment

February 2011

ANCHORED DEPLOYMENT

LUNAR Workshop 6 October 2010

PNEUMATIC PFOBOSCIS SYSTEM Chris Zacny – Honeybee, Inc.

ILRS Workshop 16 – 20 May 2011

Emplacement Accuracies

- Mounted on the Lander
 - 1-2 mm single shot accuracy
 - 7-15 ps
 - Google Lunar X Prize Teams
- Placed on the Lunar Surface
 - Fractional mm single shot accuracy
 - 4 ps
 - Google Lunar X Prize Teams
- Anchored in the Deep Regolith
 - Better than 100 microns
 - <0.7 ps
 - Astrobotics/Honeybee for Google Lunar X Prize

16 - 20 May 2011

PREMER STATION CHALLENGES

 Performance Requirements - To take Advantage of LLRRA-21 - Addressing Sub-Millimeter Ranging Basis for Requirements - Background on Requirements Components - Existing - Commercial

PREIMER STATION CHALLENGES

16 - 20 May 2011

- Telescope
- Detector
- Laser
- Timing electronics
- Clock (Frequency Standard)
- Metrology for Weather
- Gravimeter
- Site Location
- Installation

Thank You!

Any Questions?

Dector

LUNAR Workshop

- 10 ps
 - 1 5 200
- Therefore laser at 5 ps
 - Commerically available
- Electronics ok
- Atm
 - Absolute microbarometers 40 microns
 - Vertical
 - Model of atm
 - Murphy data

LSO

- History of ESO
- We need southern hemisphere
- Need premier station
- Collaboration
- La silla as a site

Why Laser Ranging

 Exquisitely precise range Sensitive to many parameters - Relativity - Geo-Physics - Seleno-Physics Satellite Ranging, -esp LAGEOS, but also other satellites - Gravity Field, Crustal properties, etc, etc.

University of Maryland, College Park Lunar Laser Ranging Array for the 21st Century Nominal Package

LIBRATION PROBLEMS

- Why is there a Problem with the Apollo Arrays
 - Libration in Both Axis of 8 degrees
 - Apollo Arrays are Tilted by the Lunar Librations
 - CCR in Corner is Further Away by Several Centimeters
 - Even Short Laser Pulse is Spread
 - Results in a Range Uncertainty by ~2 cm
 - APOLLO Station of Tom Murphy UCSD
 - Thousands of Returns per Normal Point
 - Root N to Get Range to 1 2 millimeters
 - Needs Large Telescope
 - Hard to get Daily Coverage

LLRRA-21 PROGRAM

- Solid 100 mm Cube Corner Reflector
- 40 Year Heritage, 6.5 TRL
- Program
 - Phase I
 - Surface Emplacement
 - Supports Sub Millimeter Single PhotoElectron Ranging
 - 2012 1013
 - Phase II
 - Anchored Emplacement
 - Supports Ranging at less than 100 microns
 - 2016 or Later

CHALLENGES for SOLID CCR

- Fabrication of the CCR to Required Tolerances
- Sufficient Return for Reasonable Operation
 - Ideal Case for Link Equation
- Thermal Distortion of Optical Performance
 - Absorption of Solar Radiation within the CCR
 - Mount Conductance Between Housing and CCR Tab
 - Pocket Radiation
 IR Heat Exchange with Housing
 - Solar Breakthrough Due to Failure of TIR
- Stability of Lunar Surface Emplacement
 - Problem of Regolith Heating and Expansion
 - Drilling to Stable Layer for CCR Support
 - Thermal Blanket to Isolate Support
 - Housing Design to Minimize Thermal Expansion

CCR FABRICATION CHALLENGE

- CCR Fabrication Using SupraSil 1 Completed
- Specifications / Actual
 - Clear Aperture Diameter 100 mm / 100 mm
 - Mechanical Configuration Expansion of Our APOLLO
 - Wave Front Error 0.25 / 0.15 [λ /6.7]
 - Offset Angles
 - Specification
 - 0.00", 0.00", 0.00" +/-0.20"
 - Fabricated
 - 0.18", 0.15", 0.07"
- Flight Qualified
 - with Certification

LUNAR Workshop 6 October 2010

THERMAL ANALYSIS – THEORETICAL Solar Absorption within CCR

- Solar Heat Deposition in Fused Silica
 - Solar Spectrum AMO-2
 - Absorption Data for SupraSil 1/311
 - Compute Decay Distance for Each Wavelength
 - Compute Heat Deposition at Each Point
 - Beer's Law
 - Thermal Modeling Addresses:
 - Internal Heat Transport and Fluxes
 - Radiation from CCR to Space
 - Radiation Exchange with Internal Pocket Surroundings
 - Mount Conduction into the Support Tabs

LLRRA-21 PACKAGE

CURRENT STATUS

- Preliminary Definition of Overall Package
- Completed Preliminary Simulations
 - LSSO Lunar Science Surface Opportunities
 - Thermal (CCR, Regolith, Housing), Optical
- Completed Phase I Thermal Vacuum Tests
 - Solar Absorption Effects on CCR
 - CCR Time Constants -

LUNAR Workshop

- IR Camera Front Face
- Thermocouples Volume
- Preliminary Optical FFDP

ROBOTIC DEPLOYMENT

- Candidate Flight Opportunities
 - Google X Prize
 - Astrobotics Gump
 - Moon Express Roberts
 - Lunette Discovery Mission Proposal
 - Backup Retroreflector Package
 - ILN
 - Future NASA Possibility

PNEUMATIC PROBOSCIS SYSTEM

Components

Deployment

SIGNAL STRENGTH

- 70 % Stronger than Current Apollo 15 signal level
 - At end of first decade 70% or 50% stronger than Apollo 15
- Simulated Pattern
- 180 million square meters
- Relative to current A15
 - Down by 5.2 w.r.t. A11
 - No dust
 - Up by 9.6
 - Overall stronger by 1.7
- If Apollo dust is due launch cover
- If Apollo dust is due to deposit
 - At least a decade
 - But better
 - Sun shade
 - Dust mitigator
- APOLLO gets thousands of returns in 5 minutes on Apollo 15 almost every night
 - 3.6 meter therefore smaller telescopes can work
 - At 1,000 returns on 3.6 meter, one should get 80 returns on 1 meter and 25 returns on 0.6 m