The European Laser Timing Experiment and Data Centre

Anja Schlicht Ulrich Schreiber Ivan Prochazka

ACES Atomic Clock Ensemble in Space

Time generation:

Caesium fountain clock PHARAO Active hydrogen maser SHM Frequency comparison unit

Time transfer: Microwave link MWL Laser link ELT

GPS

ACES objectives

Test of new generation space clocks

cold atoms in microgravity

test of PHARAO frequency stability $10^{-13}x\tau^{-1/2}$ and accuracy $3x10^{-16}$ test of SHM frequency stability $2.1x10^{-15}$ @ 1000 s

Freuquency transfer via MWL

test of the microwave performance 0.4 ps @ pass, 8 ps @ 1d common view comparison of ground clocks 1 ps @ pass non-common view comparison of ground clocks 3 ps @ 1000 s, 10 ps @ 10⁴ s

absolut synchronisation of ground clocks better 100 ps contribution to TAI

Fundamental Physics

gravitational red-shift drift in fine structure constant anisotropy of light

ACES clocks

Two servo-loops:

Short-term servo-loop stabilizes PHARAO on SHM

Long-term servo-loop stabilizes SHM on PHARAO

Time transfer

MWL – MicroWave Link

ELT – European Laser Timing Experiment

Microwave Link (MWL)

Requirements:

230 fs @ 300 s 1.2 ps @ 5000 s 8 ps @ 1 d 10 ps @ 10 d

ELT

European Laser Timing Experiment

 $\tau_{offset} = \frac{t_{stop2}}{t_{start}} / 2 - \frac{t_{stop}}{1} + \tau_{Relativity} + \tau_{Atmosphere} + \tau_{Geometry}$

We need fullrate data with ps resolution of t_{Start} !!!

7

ELT - Payload

Requirements:

$$\begin{split} \sigma_{x}(10 \ s < \tau < 300 \ s) &= 60 \times 10^{-12} \tau^{-1/2} \\ \sigma_{x}(300 \ s < \tau < 10^{4} \ s) &= 4 \times 10^{-12} \\ \sigma_{x}(10^{4} \ s < \tau < 10^{6} \ s) &= 7 \times 10^{-12} \end{split}$$

Absolut calibration delay < 50 ps

courtesy of W. Schäfer

ELT - detector

- K14 SPAD 100μm
- Filter 532 +- 3 nm
- Pinholes blocking non axial photons
- Narrow bandwidth filter blocks background photons
- Ground glass for attenuation
- Snowflake shield for angular independent attenuation
- Attenuation 10¹³
- Gating locked to 10pps (100pps) on ACES timescale
- Single photon mode

ELT objectives

- Space to ground comparison of clocks 4 ps @ pass, 7 ps @ 10⁶ s, accuracy 50 ps
- Common view comparison of clocks 6 ps
- Non-common view 6 ps @1000 s, 7 ps @10⁴ s
- Clock synchronisation 50 ps
- Comparison of ranging techniques
- Analysis of atmospheric propagation delays

MWL contra ELT

MWL

- All weather
- High availability
- Time proven
- Easy to operate

ELT

- Low dispersion
- Single shot
- Accurate time tagging
- Used to calibrate MWL

ACES Ground Segment

12

ELT – Data Center

communication center

scientific mission center

network interface

data center (ACES, SLR) ILRS and SLR stations ("real time" feedback) ESA and cooperating partners data users fundamental physics community

communication plattforms

internet bulletin call for participation data server

common-view campagnes emphasis on VLBI/SLR stations

predictions

definition of products, data processing

support for SLR stations

comparison of TT methodes MW, GNSS, optical, and VLBI

monitoring of space instruments calibration campagne

clock modelling, time scale

Products

Shadowing

For each station (including MWL-Terminals) entrance and exit of the shadowing of the ACES module by solar panels or orientation.

Quick look

For each ELT station sending high accuracy fullrate data an analysis of time triples and a detection rate. Warning for not being in single photon mode!!

Detector performance

Space-ground-TTF

Common-View TTF

Per-revolution Non-Common-View TTF

Once per revolution of the ISS a clock offset between all the stations successfully tracked ACES is calculated.

Longtime Non-Common-View TTF

For monitoring ground clocks the time evolution of the time-offset to ACES timescale is calculated.

Laser ranging Performance

MWL calibration

Signal delays MWL-ELT for atmospheric analysis

Performance of SLR stations

- Fullrate data with ps resolution of start puls and should be send within one houre after the pass
- clock with frequency stability comparable to ACES
- Station has to time the laser firing better 100 ns (active/active laser)
- Tracking of low satellites
- Predictions every 90 min
- Single photon mode
- Handling of a go/nogo-flag

ACES ready for Take off beginning of 2014!!

schlicht@bv.tum.de