

Single Open Reflector for MEO/GNSS type Satellites. A Status Report

Reinhart Neubert¹, Ludwig Grunwaldt¹, Christian Schopf², Engelbert Hofbauer², Jost Munder³, Mark Herding³

¹ GFZ Potsdam, ² Fachhochschule Deggendorf, ³ SpaceTech GmbH Immenstaad (Development co-funded by BMWi (Bundeswirtschaftsministerium) through AiF)

Motivation

•Improved performance (accuracy and signal strength) compared to currently used flat reflector arrays

Requirements for a GNSS Satellite Retroreflector

- •Effective Cross Section 100 Million sqm. or more
- Low pulse spreading
- •Passive, smaller accomodation area and low mass

Special characteristics:

•Angle of incidence always small (< 12°)

•Annular far field required for satellites where the alongtrack orientation is not fixed (e.g Galileo)

→ Concept of a Single Element Open/Hollow Reflector "SEH-R"

Geometry of the Reflector

y/mm

Hexagonal active area

Maximum diameter of inscribed circle: 196mm

Offset angle: $\delta = 2'' = 9.7 \cdot 10^{-6}$ (+/- 0.2")

Conical concave surface of the mirrors according to:

$$z(x, y) = \frac{\delta}{2} \cdot \left(\sqrt{x^2 + y^2} - x - y \right)$$

$$Z(0,y) = Z(x,0) = 0, \quad Z < 0 \text{ otherwise}$$

$$Z\min = -340 \text{ nm} = -0.63 \cdot \lambda,$$

$$\lambda = 532 \text{ nm}$$

Effective Radar Cross Section: Prism Array (60 prisms @ 33 mm diam.) versus SEH-R

Incidence: 0°

Incidence: 10°

Wave Front and Far Field at Normal Incidence and at 10° Incidence

	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14	F15	F16	F17
	α2+	α2-	α2+	α2-	β2+	β2+	β2-	β2-	α2-	α2+	β2-	β2-	β2+	β2+	α2+	α2-	
	α3+	α3+	α3-	α3-	β3+	β3-	β3+	β3-	β3-	β3-	α3-	α3+	α3-	α3+	β3+	β3+	
Δδ ₁₂	0.02	-0.02	-0.01	0.02	.15	.15	15	3	0	.0	14	16	.15	.15	0	0	0.4
Δδ ₁₃	-0.22	-0.21	0.2	-0.2	-0.2	2	-0.2	02	2	0.0	0	-0.2	0.2	0	2	2	-0.2
Δδ ₂₃	0.03	-0.41	0.42	0.01	0.2	.22	0.2	+.02	0	0.2	.4	-0.2	0.2	.4	.4	0	-0.2
Loss %	13	70	54	12	8	9	16	29	15	8	20	62	47	45	18	15	19
Mean Loss %	27.1																

Conclusion: The sum of angular errors should be small

Characteristics and Challenges

- "nominal" performance is superior compared to flat reflector arrays but...
- it is very sensitive to:
 - angular accuracy of mirrors relative to each other
 - any surface deformation (1g/0g effects, thermal effects, S/C interface effects etc.)
- Development of a robust mechanical/thermal design (using existing materials and processes)
 - Minimizing temperature excursions over orbit
 - "Trimming" average temperature to above 0° C
- Performance check at "ambient" temperatures
- Development of an analysis package for end to end performance simulation
- Development of the mirror alignment technology

Concept and General Layout

- From various trade offs a SSiC mirror assembly is the most promising solution
- Enhanced silver surface coating
- Housing and thermal enclosure targets for trimming to minimum gradients

Thermal Design

13.38

From the transient temperature of the mirror.....

Mechanical Stability

The temperature distribution is mapped as input for a mechanical FEM model.

The thermal deformations normal to the mirror surfaces are computed and transferred to the optical performance analysis.

Alignment Technology

Measuring the tilt between two flat surfaces with interferometer technology

Measurement inaccuarcy: s = ± 0,05 arcsec Adjustment sensibility: < 0,15 arcsec Fixing: < 0,2 arcsec After fixing: < 0,5 arcsec

Test example (figure): 0,14 arcsec

Conclusion:

What we have:

- •Matching the far field to the velocity aberration, optical specification
- •Thermal modelling and material selection (substrate and coatings)
- Mechanical design
- •Assembling technology: 0.2 arcsec accuracy demonstrated

What has to be done:

Bread board model to investigate the angular accuracy and long term stabilityPrototype manufacturing and test