Cube Corner performance estimation using ZEMAX

Mark Davis
US Naval Research Laboratory
David Arnold
Mike Pearlman
Harvard Smithsonian Center for Astrophysics

$17^{\text {th }}$ International Workshop on Laser Ranging
May 2011

Overview of Study

- Uncoated Corner Cubes
- Extensive numerical comparison with David Arnold's models and results
- Incident angles of 0 and 14 degrees for the $1.5^{\prime \prime}$ cube
- Coordinate Frames (Linear Polarizations and Cube References)
- Cube Orientation and "Clocking"
- Quadrature Clocking Results (4 cubes oriented at 0,30,60,90 degree and summed)
- Interpolated Annulus Response
- Normalized (with respect to a perfect reflector)
- Airy Units (Millions of meters^2 (MSM))
- Diameter and Spoiling Permutations
- ZEMAX modeling and scripting

- Custom software for interpretation, summary and extrapolations
- Results for average and worst case incident angles
- Physical Size

- Variation in the annulus of interest
- Number of Cubes

What does ZEMAX Offer?

- Commercial Package "Software for Optical System Design"
- Corner cube is defined by physical solids
- 4 vertices (Defines the "clocking" or orientation),
- Boolean Intersection with a cylinder constructs the solid
- Variable Substrate, surface coating and thickness
- Surface Tolerance
- Aperture stops
- Illumination Situation
- Incident angle about any direction
- Arbitrary wavelength

- Laser Polarization defined via Jones Vector (H,V, circular, and elliptical)
- Generates the Transmission Report and Huygens Point Spread Function (normalized to unity)
- Post processing software
- Generates the annulus statistics results and converts to MSM units
- Quadrature sum

Enormous amount of flexibility to vary the situation (sometimes to much!)

Cubes Modeled in Zemax

inches $\begin{aligned} & \text { apertur } \\ & \text { mm }\end{aligned}$	e radius mm		CLOCKING 000											Colored
			0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1	
1	25.40	12.70	X	X	X	x	X	X	x	X	X	x	X	
1.1	27.94	13.97	x	x	x	x	x	x	x	x	x	x	x	
1.2	30.48	15.24	x	X	x	X	x	X	x	X	X	X	x	
1.3	33.02	16.51	X	X	x	X	x	X	X	X	x	x	X	
1.4	35.56	17.78	x	x	x	x	X	X	X	x	x	x	X	Cells were "Best" In Some situation
1.5	38.10	19.05	X	X	X	X	X	x	x	X	x	x	x	
1.6	40.64	20.32	x	x	x	X	x	X	x	X	x	x	X	
1.7	43.18	21.59	X	x	x	X	X	X	X	x	x	x	X	
1.8	45.72	22.86	x	x	x	x	x	x	x	x	x	x	x	
1.9	48.26	24.13	X	X	x	X	x	x	x	x	x	x	x	
apert	aperture radius $\mathrm{mm} \quad \mathrm{mm}$		CLOCKING 000,030,060,090											
inches mm			0		0.2		0.4		0.6		0.7	0.8	0.91	
1	25.40	12.70												
1.1	27.94	13.97	X	X	x	X	x							
1.2	30.48	15.24	x	x	x	x	x							
1.3	33.02	16.51	x	x	x	X	x							
1.4	35.56	17.78	X	x		x	x	x						
1.5	38.10	19.05	X	x			X	x	X					
1.6	40.64	20.32	X			x	x	X	X	X				
1.7	43.18	21.59	X				x	x	x					
1.8	45.72	22.86	X							x				
1.9	48.26	24.13	x							x				

990 patterns at clocking of 000 and
 351 combinations of patterns quad clocked

GNSS Specifics and Assumptions

- Annulus is specific to mission
- 532.1 nm
- 0 to 14 deg incidence angle

Mission	Minimum urad	Maximum urad
GPS	23.0	26.25
GIOVE	21.75	25.75
COMPASS	22.5	26.0
GLONASS	23.5	28.0
ETS	17.9	18.4
QZSS	17.0	20.0

24.5 was used for all the GPS-III results

GNSS Optical Antenna Pattern Trade Space

- 1.0 to 1.9 inch aperture uncoated cubes at $0.1^{\prime \prime}$ steps
- 0.0 to 1.0 arcsec spoiling
- Clocking with and with out quadrature
- Linear and circular excitation lasers
- Incident angles 0, nominal (7 deg), and worst case (14 deg)
- Thousands of diffraction patterns generated in ZEMAX optical design software
- Evaluation at the working annulus
- Validation and Comparison with Legacy Analysis Codes
- Evaluate all combinations (minimum and average in the annulus) to
- Achieve Optical Cross Section exceeding 100 Millions of Square meters
- Derive the number of cubes
- Estimate the physical size (rules of thumb packing factors)
- Measure signal variation in the annulus

ALL designs (by construction) are 100 MSM on average in the annulus

Incident 0 degree results Rarely Used - easy to model

minimum needed to meet the 100 MSM
on average at 24.5 microradians

000 Clocking/ Quad Clock - Circular

Incidence 0 deg -000	Diameter (mm)	$\begin{array}{r} \text { DAO } \\ \text { Arcsec } \end{array}$	Variation \%	$\begin{array}{r} \text { Avg } \\ \text { \#Cubes } \end{array}$	Edge Length (cm)	Cube Normalized	Cube MSM
Most compact - mechanical size	48.3	0.7	71	19	24	0.03563	5.29193
Most stable - lowest signal variation in the annulus	25.4	0.3	23	116	32	0.07606	0.86675
Lowest number of cubes	48.3	0.7	71	19	24	0.03563	5.29193
Largest Average Cross section in Annulus	48.3	0.7	71	19	24	0.03563	5.29193
Largest Peak Cross section in Annulus	48.3	0.6	81	20	25	0.03433	5.09881
Incidence 0 deg QUAD	Diameter (mm)	$\begin{array}{r} \text { DAO } \\ \text { Arcsec } \end{array}$	Variation \%	$\begin{aligned} & \text { Avg } \\ & \text { \#Cubes } \end{aligned}$	Edge Length (cm)	Cube Normalized	$\begin{aligned} & \text { Cube } \\ & \text { MSM } \end{aligned}$
Most compact - mechanical size	48.3	0.7	7	19	24	0.03572	5.30537
Most stable - lowest signal variation in the annulus	33.0	0.0	3	43	25	0.07214	2.34789
Lowest number of cubes	48.3	0.7	7	19	24	0.03572	5.30537
Largest Average Cross section in Annulus	48.3	0.7	7	19	24	0.03572	5.30537
Largest Peak Cross section in Annulus \qquad	48.3	0.7	7	19	24	0.03572	5.30537

000 Clocking/ Quad Clock - Linear

Incidence 0 deg -000	Diameter (mm)	$\begin{array}{r} \text { DAO } \\ \text { Arcsec } \end{array}$	Variation \%	$\begin{array}{r} \text { Avg } \\ \text { \#Cubes } \end{array}$	Edge Length (cm)	Cube Normalized	$\begin{aligned} & \text { Cube } \\ & \text { MSM } \end{aligned}$
Most compact - mechanical size	48.3	0.7	70	21	26	0.03256	4.83603
Most stable - lowest signal variation in the annulus	25.4	0.1	49	127	33	0.06955	0.79259
Lowest number of cubes	48.3	0.7	70	21	26	0.03256	4.83603
Largest Average Cross section in Annulus	48.3	0.7	70	21	26	0.03256	4.83603
Largest Peak Cross section in Annulus	48.3	0.7	70	21	26	0.03256	4.83603
Incidence 0 deg QUAD	Diameter (mm)	$\begin{array}{r} \text { DAO } \\ \text { Arcsec } \end{array}$	Variation \%	$\begin{array}{r} \text { Avg } \\ \text { \#Cubes } \end{array}$	Edge Length (cm)	Cube Normalized	$\begin{aligned} & \text { Cube } \\ & \text { MSSM } \end{aligned}$
Most compact - mechanical size	48.3	0.7	46	21	26	0.03218	4.77907
Most stable - lowest signal variation in the annulus	33.0	0.0	0.9	47	26	0.06548	2.13118
Lowest number of cubes	48.3	0.7	46	21	26	0.03218	4.77907
Largest Average Cross section in Annulus	48.3	0.7	46	21	26	0.03218	4.77907
Largest Peak Cross section in Annulus 4/23/2011 GNSS Cube Trade	48.3	0.7	46	21	26	0.03218	4.77907

Incident 14 degree results Low elevation and Acquisition

minimum needed to meet the 100 MSM
on average at 24.5 microradians

Quad Clocked - Linear

Incidence 7 deg	Diameter (mm)	$\begin{array}{r} \text { DAO } \\ \text { Arcsec } \end{array}$	Variation \%	Avg \#Cubes	Edge Length (cm)	Cube Normalized	Cube MSM
Most compact - mechanical size	35.6	0.1	17\%	50	29	0.04625	2.02451
Most stable - lowest signal variation in the annulus	33.0	0.0	8\%	62	30	0.04965	1.6158
Lowest number of cubes	48.3	0.7	75\%	31	31	0.02194	3.25786
Largest Average Cross section in Annulus	48.3	0.7	75\%	31	31	0.02194	3.25786
Largest Peak Cross section in Annulus	48.3	0.7	75\%	31	31	0.02194	3.25786
Incidence 14 deg	Diameter (mm)	$\begin{array}{r} \text { DAO } \\ \text { Arcsec } \end{array}$	Variation \%	$\begin{aligned} & \text { Avg } \\ & \text { \#Cubes } \end{aligned}$	Edge Length (cm)	Cube	Cube MSM
Most compact - mechanical size	40.64	0.0	27\%	50	32	0.027525	2.03531
Most stable - lowest signal variation in the annulus	35.6	0.0	15\%	70	34	0.03255	1.42495
Lowest number of cubes	45.7	0.0	47\%	44	35	0.02725	2.03531
Largest Average Cross section in Annulus	45.7	0.0	47	44	34	0.01903	2.27597
Largest Peak Cross section in Annulus 4/23/2011 GNSS Cube Trade	48.3	0.7	75\%	45	37	0.01518	2.25469 11

Quad Clocked - Circular

Incidence 7 deg	Diameter (mm)	DAO Arcsec	Variation $\%$	Avg \#Cubes	Edge Length (cm)	Cube Normalized	Cube MSM	
Most compact - mechanical size	38.1	0.0	12%	40	27.5	0.04353	2.51106	
Most stable - lowest signal variation in the annulus	33.0	0.0	5%	57	28.4	0.05449	1.77333	
Lowest number of cubes	48.3	0.7	23%	29	30	0.02334	3.46626	
Largest Average Cross section in Annulus	48.3	0.7	23%	29		30	0.02334	3.46626
Largest Peak Cross section in	48.3		0.7	23%	29		30	0.02334
Annulus								

Example of the "realm of possible solutions"

14 Deg Incidence
Number of cubes needed to reach 100MSM

Minimum must exceed 100MSM

Incident 7 degree results Typically elevation and Most Used

minimum needed to meet the 100 MSM
on average at 24.5 microradians

000 Clocking- Linear

Incidence 7 deg	Diameter (mm)	$\begin{array}{r} \text { DAO } \\ \text { Arcsec } \end{array}$	Variation \%	$\begin{array}{r} \text { Avg } \\ \text { \#Cubes } \end{array}$	Edge Length (cm)	Cube	$\begin{aligned} & \text { Cube } \\ & \text { MSM } \end{aligned}$
Most compact - mechanical size	35.6	0.0	76	48	28	0.0481	2.10569
Most stable - lowest signal variation in the annulus	25.4	0.0	45	177	39	0.04984	0.56791
Lowest number of cubes	48.3	0.7	82	30	31	0.02269	3.37012
Largest Average Cross section in Annulus	48.3	0.7	82	30	31	0.02269	3.37012
Largest Peak Cross section in Annulus	48.3	0.7	82	30	31	0.02269	3.37012
Incidence 14 deg	Diameter (mm)	$\begin{array}{r} \text { DAO } \\ \text { Arcsec } \end{array}$	Variation \%	$\begin{array}{r} \text { Avg } \\ \text { \#Cubes } \end{array}$	Edge Length (cm)	Cube Normalized	$\begin{aligned} & \text { Cube } \\ & \text { MGS } \end{aligned}$
Most compact - mechanical size	40.64	0.1	92	47	32	0.02889	2.15786
Most stable - lowest signal variation in the annulus	25.4	0.3	42	269	48	0.03266	0.37215
Lowest number of cubes	48.3	0.4	93	40	35	0.0172	2.55502
Largest Average Cross section in Annulus	48.3	0.4	93	40	35	0.0172	2.55502
Largest Peak Cross section in Annulus 4/23/2011 GNSS Cube Trade	45.7	0.1	109	43	34	0.01976	2.36351 15

000 Clocking- Circular

Incidence 7 deg	Diameter (mm)	$\begin{array}{r} \text { DAO } \\ \text { Arcsec } \end{array}$	Variation \%	$\begin{array}{r} \text { Avg } \\ \text { \#Cubes } \end{array}$	Edge Length (cm)	Cube Normalized	$\begin{aligned} & \text { Cube } \\ & \text { MSM } \end{aligned}$
Most compact - mechanical size	35.5	0.0	63	46	28	0.05034	2.20392
Most stable - lowest signal variation in the annulus	25.4	0.1	37	169	38	0.05213	0.59405
Lowest number of cubes	48.3	0.7	93	29	30	0.02348	3.48741
Largest Average Cross section in Annulus	48.3	0.7	93	29	30	0.02348	3.48741
Largest Peak Cross section in Annulus	48.3	0.6	102	29	30	0.02318	3.44308
Incidence 14 deg	Diameter (mm)	$\begin{array}{r} \text { DAO } \\ \text { Arcsec } \end{array}$	Variation \%	$\begin{array}{r} \text { Avg } \\ \text { \#Cubes } \end{array}$	Edge Length (cm)	Cube Normalized	$\begin{aligned} & \text { Cube } \\ & \text { MSM } \end{aligned}$
Most compact - mechanical size	40.6	0.0	82	46	32	0.02900	2.16568
Most stable - lowest signal variation in the annulus	27.9	0.0	43	186	44	0.0148	0.53651
Lowest number of cubes	48.3	0.5	134	41	36	0.01669	2.47902
Largest Average Cross section in Annulus	48.3	0.5	134	41	36	0.01669	2.47902
Largest Peak Cross section in Annulus \qquad	48.3	0.5	134	41	36	0.01669	2.47902 16

Discussion

- Trades
- Number of cubes (Cost)
- Most effective cube - Optically
- Most compact mechanically
- Most flexabilty for the stations
- Linear Polarization control to "double" the cross section
- Circular Polarizaton to automatically smooth the annulus
- Annulus Uniformity
- How small can we make the in annulus variance?
- What do we give up?

Next Steps and Questions

- Is 100 MSM enough for daytime AOS?
- How much bigger is needed to support routine daytime?
- What specific data is helpful from the LNF lab results
- Model quantification
- As built performance
- Results ZEMAX is designed for solving
- Is an AR coating the Aperture beneficial?
- What about Elliptical Beams?
- Oops we clocked them backward
- Shoulder Height impacts
- Aperture Stops and the mechanical structure
- Manufacturing Tolerances
- Is the substrate the best we have today?
- Can we model Glonass 115 and CompassM1?
- What tolerance and clocking data are available
- How is the tray oriented wrt the body specific axis
- Do we model the attitude accurately during noon/midnight turns?

Conclusions

- Panel Discussion

Spare Slides

ETS8/QZSS Heritage Concepts

- 1.6" Cube - Assume 100 MSM for 0 incident angle for the Average
- strongest signal in the annulus at 0 deg --- cube clocked at 000
- V 0.4 " - need 38.2 cubes for $28.9 \times 28.9 \mathrm{~cm}--80 \%$
- H $0.4^{\prime \prime}$ - need 38.6 cubes for $29.0 \times 29.0 \mathrm{~cm}-78 \%$
- C $0.4^{\prime \prime}$ - need 35 cubes with $27.6 \times 27.6 \mathrm{~cm}-88 \%$
- Variation is 78 to 88% about this average
- Strongest signal in the annulus at 0 deg - cube's quad clocked
- V 0.4 " -- need 38 cubes for $28.8 \times 28.8 \mathrm{~cm}-49 \%$
- H 0.4" - need 39 cubes for $29 \times 29 \mathrm{~cm}-49 \%$
- At 14 deg this needs 93 (51 for avg) cubes -40.4% variation - size is $45 \times 45 \mathrm{~cm}$
- C 0.4 " -- need 35 cubes for $28 \times 28 \mathrm{~cm}$ with 7% variation
- Getting stations to add a QWP is feasable
- At 14 deg this needs 75 (55 for avg) cubes -30% variation - size is $38 \times 38 \mathrm{~cm}$

Still can use +49 or $+80 \%$ signal if you orient the linear beam correctly

Unspoiled Concept

- 1.5 " Cube 38.1 mm - Assume 100 MSM for 0 incident angle for the Average - strongest signal in the 24.5 urad annulus at 0 deg --- Assumes quad clocking
- In terms of MSM
- V -- 39 cubes -1.4% variation $-27 \times 27 \mathrm{~cm}$
- H-40 cubes - 1.4\% variation - $27.2 \times 27.2 \mathrm{~cm}$
- At 14 deg we need 69 cubes and still get 18.8% variation $-36 \times 36 \mathrm{~cm}$
- C -37 cubes -3.8% variation $-26 \times 26 \mathrm{~cm}$
- At 14 deg we need 61 cubes and still get 13.3% variation
- 1.1" cube - 27.94 mm Cube - Assumes 100 MSM for 0 incident angle for the Average
- Strongest Normalized unit signal
- V - 84 cubes for 1.0% variation needs $29.2 \times 29.2 \mathrm{~cm}$
- H-84 cubes for 1.0% variation needs $29.2 \times 29.2 \mathrm{~cm}$
- At 14 deg we need 287 cubes (187 for the average) and have 31% variation $-54 \times 54 \mathrm{~cm}$
- C - 79 cubes for 1.3% variation needs $27.8 \times 27.8 \mathrm{~cm}$
- At 14 deg we need 206 cubes and still have 13.8% variation

OTHER BACKUPS

Tracking today: Aluminum Coated

Tracking Today: Uncoated

Optimize for the worst case at AOS/LOS

Assumptions

- Annulus is 24 microradians
- Uncoated cubes
- 1 mm at aperture "extra height"
- Properly mounted to minimize thermal effects
- Maximum of 14 deg off normal
- Stations are using either Linear or Right Circular Polarization
- 100 Million Square Meters (MSM) is enough
- All tray size and number of cubes target this limit

Array Area to achieve 100 MSM

- For Each combination of
- Incident angle 0, 7, 14 degrees
- Dihedral Angle Offset (DAO)Spoiling [0 to 1]
- Cube size [1 to 1.9 inch]
- Polarization Horizontal, Vertical, Right Circular
- Compute the Min, Average, Max within 1 urad of the annulus of interest
- Normalized (to unity airy disk)
- MSM (Millions of Square Meters)
- Number of cubes needed to achieve the 100MSM for min and average
- Array Size
- N cubes * optical area (pi()*cuberadius^2) * scale
- Scale chosen to be 1.67 for ETS8 style
- Others were 2.3 GPS-blockll, 2.46 - Compass, 2.3-Optus
- Report the linear side dimension (assumes a square solution)

By construction - ALL the designs will meet the 100 MSM

Quad-Clocked Results

Average needed for 100 MSM - 4-clocked cubes Incident angles of $0,7,14$, Polarization $\mathrm{H}, \mathrm{V}, \mathrm{C} 10$ cubes sizes

Cube at 000 results

Average needed

Big Picture - 4 cube clocking orientations

All of the Quad Clocked permutations
for 0, 7, 14 Deg Incident and H,V,C Polarizations (10 cube diameters
shown)

Big Picture - Strict 0 deg clocking

Strict 000 deg clocking orientation
 0,7,14 deg Incidence, All H,V,C Polarizations and 10 cube diameters shown

14 deg incident Angle Only

14 Deg Incidence
Number of cubes needed to reach 100MSM

Minimum must exceed 100MSM

14 deg incident Pattern Smoothness 4 quad clocked cubes - Linear

14 deg incident Angle Only

14 deg incident Pattern Smoothness 4 quad clocked cubes - Circular

Smoothness of the pattern in the annulus

