GOCE, satellite gravimetry and a subjective view on the role of satellite laser ranging

Reiner Rummel Institute of Astronomical and Physical Geodesy Technische Universität München rummel@bv.tum.de

International Laserworkshop, Wettzell, 16.5.2011

How to connect to the theme of this workshop?

- laser tracking of GOCE?
- the connection of geometry and gravity?
- future gravimetric satellite missions and laser technology?

•

- first principle of satellite gravimetry
- satellite gravimetry a short history
- GOCE versus GRACE
- GRACE and GRACE follow-on
- GOCE gravity gradiometry and its sensor system
- GOCE and the role of its orbits
- satellite gravimetry and fundamental physics

I. Newton "De mundi systemate" 1715

1957: Sputnik 1

today: LAGEOS I and II

steady decrease of earth flattening change of trend in recent years

Cox & Chao, Science, 297, 2002

temporal changes of the earth's flattening: what are the causes?

Dickey, Marcus, de Viron, Fukumori, 2002

candidates:
ocean masses
melting ice caps
atmospheric masses

hydrology

alliance of geodesy and fundamental physics

Ciufolini I, A Paolozzi, EC Pavlis, JC Ries, R König, RA Matzner, G Sindoni, H Neumayer: Towards a One Percent Measurement of Frame Dragging by Spin with Satellite Laser Ranging to LAGEOS, LAGEOS 2 and LARES and GRACE Gravity Models in: Probing the Nature of Gravity by Everitt CWF et al. (eds.) 2010

Ciufolini I: Phys. Rev. Lett. 56, 278–281 (1986) Measurement of the Lense-Thirring drag on high-altitude, laser-ranged artificial satellites

Bertotti B: Generation of geodesic motion by the twin probe method, 1974

observatories "see" only short arc segments

many satellites, many orbit characteristics, many arcs

a new era: 1. uninterrupted tracking in 3D (GNSS)2. low earth orbiters (LEOs)3. ultra precise accelerometers

satellite-to-satellite tracking in high-low mode

geoid model derived from high-low satellite-to-satellite tracking

several test masses in free fall

several test masses in free fall

from absolute to differential measurement

baseline: 200km

several test masses in free (?) fall

degree variances (median) of signal and noise

problem with degree/order zero, one, two and low harmonics

GRACE measures temporal gravitational changes example: seasonal changes of continental hydrology

GOCE measures spatial details of geoid

geostrophic velocities up to d/o 180

the future

see also, e.g.: Bender PL, RS Nerem, JM Wahr: possible future use of laser gravity gradiometers, Space Sci Rev 108, 2003

the future

"how to make use of very high precision?"

Watkins, M, 2007

GOCE

GOCE

Gravity and steady-state Ocean Circulation Explorer

launched on 17 March 2009

first mission of "Living Planet Programme" of ESA

GOCE

GOCE

- inclination 96 degrees (sun synchronous)
- circular orbit
- altitude 259 km
- duration > 18 months

mission objectives:

- spatial details (100km)
- gravity to 1 ppm
- geoid 1-2-cm

GOCE gravitational gradiometry

single accelerometer

one axis gradiometer

three axes gradiometer consisting of 6 accelerometers

GOCE sensor system

GOCE sensor concept

orbit and gravity field determination from GPS independent control via satellite laser ranging (SLR)

newly developed European space qualified GPS receiver

laser retroreflectors

GOCE orbits

comparison with satellite laser ranging

GOCE orbits

RMS differences 2cm

GOCE orbits

Jäggi et al., 2010

orbit validation with SLR

PSO: validation with SLR

SLR residuals, as derived from GOCE tracking

Jäggi et al., 2010

systematic cross-track orbit errors are directly observed by SLR a novelty

GOCE and oceanography

mean sea surface 1992- 2010 from multi mission radar altimetry

geoid from six months GOCE data

GOCE and oceanography

mean ocean topography (in m)

IAPG/ TUM

GOCE and oceanography

IAPG/ TUM

GOCE and geophysics

 V_{zz} -component from two months GOCE

the future

The alliance with fundamental physics: LISA pathfinder LISA STEP Microscope, Beppi Colombo...

the future

GRAVITATION

Charles W. MISNER Kip S. THORNE John Archibald WHEELER

[Misner, Thorne & Wheeler, 1973]

Geodesic

of the apple"

The story of two ants walking on an apple: "They walk from two adjacent points A und B, each taking the shortest distance, to two adjacent points A' und B'. We measure the distance between them, while they are walking. From the measured distances we derive the local curvature

gravity is geometry

concluding remarks

- SLR ties (geometric) co-ordinate system
 to spherical harmonic expansion of the gravitational field
- growing importance of consistency between geometry and gravity (think of studies of sea level rise, continental hydrology, ice mass balance, dynamic ocean topography,...)
- SLR as validation tool
- strengthen alliance with fundamental physics
- LAGEOS-3 counter orbiting: should one study it?
- laser gradiometry (Bender et al.)
- laser link between free falling proof masses

Level 2 processing: High Level Processing Facility (HPF)

GOCE End-to-End Simulation Scheme

