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Abstract:
Modern earth observation techniques require a precise knowledge about the position and velocity of observed  satellites or other objects in space. Computing the 
position analytically does not provide the needed accuracy anymore, due to a missing analytical high accurate orbital-theory. In order to gain accuracy, it is 
common to compute an orbit by solving ordinary differential equations (ODEs). Solving this kind of mathematical equations leads to well tested standard-methods 
like Runge-Kutta-methods, Burlisch-Stoer, symplectic or power-series integrators. These solvers have been implemented using C++-templates allowing to change 
the floating-point data type at compile time. Therefore multi-precision data types with a free-to-choose decimal precision can be used. Based on this approach, each 
numerical solver can operate with variable internal precision. This, for instance, makes it possible to reveal round-off errors or missing accuracies by simply 
increase the precision of the underlying data type. It can be used to verify computed or measured results with, so far not available numerical accuracy. Solving an 
ODE with high accuracy using a multi-precision library requires more CPU-cycles. This is why the implemented algorithms has been profiled and highly optimized 
to avoid wasting CPU-cycles on our testing platforms.

Design and implementation

Numerically solving an Ordinary Differential Equation (ODE), seen from the programming 
point of view, is a task that can be split up into three parts. First of all an algorithm is needed, 
capable of solving an ODE. Each of this solvers has its own characteristic and therefore their 
specific pros and cons. Nevertheless, a standardized interface has been created using object-
oriented inheritance, which allows to plug-in any ODE into the solver. This design makes it 
possible to extend the available ODEs without touching the already well tested implementation 
of the solving-algorithm. The ODE can be implemented by simply deriving from a base class 
containing pure-virtual functions that must be implemented by the derived class. This separation 
between algorithm and mathematical problem into separated and independent components 
massively improves the re-usability of the software components. In general, all algorithms are 
implemented with basic datatypes, having a fixed precision. This is why all the modules have 
been implemented as C++-template classes, offering a way to implement the classes without 
this datatype dependency. Based on this, the corresponding standard - or multi-precision 
datatype, used for the computation can be selected at compile-time. In case of multi-precision, 
most of the used datatypes are capable of changing their internal decimal precision during 
runtime. 

Results of long time evolution of Earth-Moon distance

In the plot (right) the results of a comparison of two different 
numerical simulations is shown. Both simulations where 
computed using the BS-solver with adaptive step-size control. 
Furthermore identical settings and initial values where used to 
compute the orbit based on the LiDIA - multi-precision datatype. 
The first solution was computed with a decimal precision of 16 
significant digits and the second with 38 significant digits. The 
plot shows the absolute errors for each coordinates and the  
distance along the integration time of 32 years. The plot shows 
the absolute error in each coordinate starting to oscillate after 
approximate ten years integration time. The absolute error in 
range increases after approx. 12 years, decreases and then 
accumulates to 0.5 m at approx. 28 years. During the integration 
the ODE-function was called ~300000 times. This possibly 
explains the increase of round-off errors, due to millions of 
floating point operations over the whole integration. This 
possibility of checking for round-off errors using multi-precision 
methods is a very helpful technique to verify results.

Categorization of solvers

In the table (left), the implemented solvers are listed and 
grouped by their specific features. Each solving-algorithm has 
its own characteristics. Some of the solvers have a built-in 
adaptive step-size control mechanism. This means, before the 
integration starts, the user can set an absolute and relative 
error-bound. According to this information, the integration-
solver chooses the step-size automatically. Most of the 
algorithms are designed to solve ODEs of first order, because 
a ODE of higher order can be transformed into a system of 
first order ODEs. Nevertheless the GJ4 algorithm has been 
implemented, capable of solving second order ODEs. 
Computing the next time-step (solving an ODE) can be done 
using different approaches. The single-step methods use only 
data from the last step, whereas the multi-step methods take 
into account former time-steps. The power series methods 
create and solve at each integration step a power-series, 
according to recursive laws of power-series composition. In 
this case, the order of the series is not fixed and can be set by 
the user. The symplectic solvers are designed to be more 
energy conserving than others.
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