

SCF-Test and FFDP-Test of Flight-quality Uncoated Cube Corner Laser Retroreflectors

S. Dell'Agnello¹, G. O. Delle Monache¹, D. G. Currie^{*2}, R. Vittori³, C. Cantone¹, M. Garattini¹, <u>A. Boni⁴</u>, M. Martini¹, C. Lops¹, N. Intaglietta¹, D. A. Arnold⁵, M. R. Pearlman⁵, G. Bianco⁶, S. Zerbini⁷, M. Maiello¹, S. Berardi¹, L. Porcelli¹, G. Patrizi¹, J. F. McGarry⁸, C. O. Alley², T. W. Zagwodzki⁸

¹ Laboratori Nazionali di Frascati (LNF) dell'INFN, Frascati (Rome), Italy, ² University of Maryland (UMD), College Park, MD, USA, ³ Aeronautica Militare Italiana (AMI) and Agenzia Spaziale Italiana (ASI), Rome, Italy, ⁴ University of Rome "Tor Vergata" and INFN-LNF, Rome, Italy, ⁵ Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, MA, USA, ⁶ ASI, Centro di Geodesia Spaziale "G. Colombo" (ASI-CGS), Matera, Italy, ⁷ University of Bologna, Bologna, Italy, ⁸ NASA, Goddard Space Flight Center (GSFC), Greenbelt, MD, USA,* We would like to thank NASA Lunar Science Institute for the support given to part of this work

Abstract

Using dedicated facilities of INFN-LNF in Frascati, Italy, including the "Satellite/lunar laser ranging Characterization Facility" (SCF, Adv. Space Res. 47 (2011) 822–842), we characterized the detailed thermal behavior and/or the optical performance of many flight units of coated and uncoated cube corner laser retroreflectors (CCRs). As a reference for the ILRS user community, with this poster we provide a compilation of the many tests carried out in the last years on uncoated CCRs (tests on coated CCR are reported in detail in the Adv. Space Res. 47 (2011) 822–842).

LLRRA-21, an uncoated lunar CCR

FFDP measurements performed with green laser (λ =532 nm), with \emptyset ~ 38 mm

LARES flight CCRs (FFDP test in air, by INFN-LNF authors only)

- Industrial <u>ACCEPTANCE</u> tests in air at λ =632.8nm were performed by INFN-LNF on all of the 110 flight CCRs manufactured by ZEISS for the LARES satellite, in order to asses the compliance of the CCRs with the following optical specifications: DAOs = 1.5 ± 0.5 arcsec. This work, requested by ASI to INFN-LNF, was performed in 3 working weeks before Christmas 2008. This work was completely successful and approved by ASI with ASI reference document: DC-OSU-2009-012.
- Definition of an acceptance band (using CODE V software simulations) for FFDP measurements. Priority for the acceptance given to peaks distances.
- Test and analysis procedures developed in the framework of the ETRUSCO INFN-LNF experiment (PI S. Dell'Agnello of INFN-LNF).

11]

070 074

Lot 3

Lot 4

042 064

LAGEOS Sector CCRs (in air FFDP test)

0.04

Average intensity of simulated FFDP vs velocity

aberration for $\lambda = 532$ nm

GREEN LASER MEASUREMENTS. Edge 1 FFDPs (left plots). Average intensity vs distance from FFDP center (central plots); comparison between simulated patterns (CODEV) and measured patterns. Intensity along a circle at a certain velocity aberration (19 rad for right plots)

FFDP: Far Field Diffraction Pattern