
Evaluation of PPN parameter Gamma as a test of General Relativity using SLR data Ludwig Combrinck

HartRAO

16th International workshop on laser ranging Poznan, Poland, October 2008

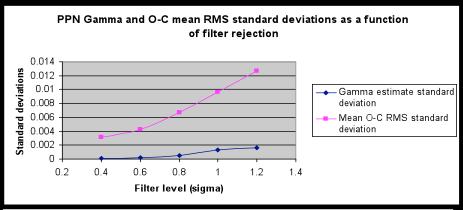
$$\Delta \vec{r} = \frac{GM_E}{c^2 r^3} \left\{ [2(\beta + \gamma) \frac{GM_E}{r} - \gamma \vec{r} \cdot \vec{r}] \vec{r} + 2(1 + \gamma) (\vec{r} \cdot \vec{r}) \vec{r} \right\} +$$

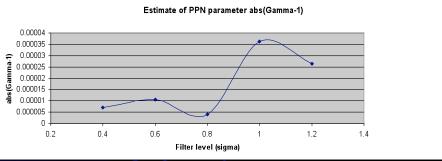
$$(1 + \gamma) \frac{GM_E}{c^2 r^3} \left[\frac{3}{r^2} (\vec{r} \times \vec{r}) (\vec{r} \cdot \vec{J}) + (\vec{r} \times \vec{J}) \right] +$$

$$\left\{ (1 + 2\gamma) \left[\vec{R} \times \left(\frac{-GM_S \vec{R}}{c^2 R^3} \right) \right] \times \vec{r} \right\},$$

c =speed of light,

 $\beta, \gamma = PPN$ parameters equal to 1 in General Relativity,


 \vec{r} is the position of the satellite with respect to the Earth,


 \vec{R} is the position of the Earth with respect to the Sun,

 \vec{J} is the Earth's angular momentum per unit mass $(|\vec{J}| \cong 9.8 \times 10^8 \text{m}^2/\text{s})$, and

 GM_E and GM_S are the gravitational coefficients of the Earth and Sun, respectively.

- Gamma estimated as a solve-for parameter in least-squares sense
- RMS of O-C used as criteria for filter to reduce effect of mismodelling
- SLR strength is 2-way range, and GR radial acceleration is mostly radial
- Results preliminary, longer time span, combination of LAGEOS/LAGEOS II and evaluation of different gravity models to follow, effects of modelling improvement should be apparent in errors

Filter (σ)	PPN $ \overline{\gamma}-1 $	σ	Mean O-C RMS (m)	σ (m)
0.4	6.977×10 ⁻⁶	0.000078014	0.005403	0.003136
0.6	1.0649×10 ⁻⁵	0.000183666	0.007469	0.004251
0.8	3.947×10 ⁻⁶	0.000525783	0.011888	0.006701
1.0	3.268×10 ⁻⁵	0.001324442	0.017238	0.009609
1.2	2.6428×10 ⁻⁵	0.001647755	0.023074	0.012702