16th International Workshop on Laser Ranging, Poznan, Poland, October 11-17 2008

International Terrestrial Reference Frame - Latest Developments

Horst Müller

Deutsches Geodätisches Forschungsinstitut, München E-Mail: mueller@dgfi.badw.de

Situation after ITRF2005

The fact that ITRF2005 showed a scale difference of about 1ppb between SLR and VLBI and the fact that SLR did not contribute to the ITRF2005 datum definition has started a vital discussion.

- The ITRF scale could not be used for SLR analysis
 - ITRF2005 rescaled
 - SLRF2005
- Detailed analysis of the various techniques
 - A few sources for the scale discrepancy could be detected
- Activitities to produce longer and harmonized timeseries
 - SLR back to 1983
 - VLBI, GPS reprocessing with better models
 - New stations with longer time series
- Discussion on the processing strategy
 - DGFI ITRF solution on free normal equation level did not show this scale problem
 - Combination on observation level (Biancale, 2007)

Reasons for Scale Problems

- VLBI
 - Wrong polar tide correction
 (up to 1 cm in height ~ 0.54 ppm)
- SLR
 - Bias problems (Stanford counters, CoM, ..)
 - Short time series (1993-2005)
- GPS, DORIS
 - Not used for scale definition
- Local Ties
 - distribution and weighting
 - co-location between SLR and VLBI is problematic
- Processing Strategy

• Different concepts at IGN and DGFI

Data sets in ITRF2005

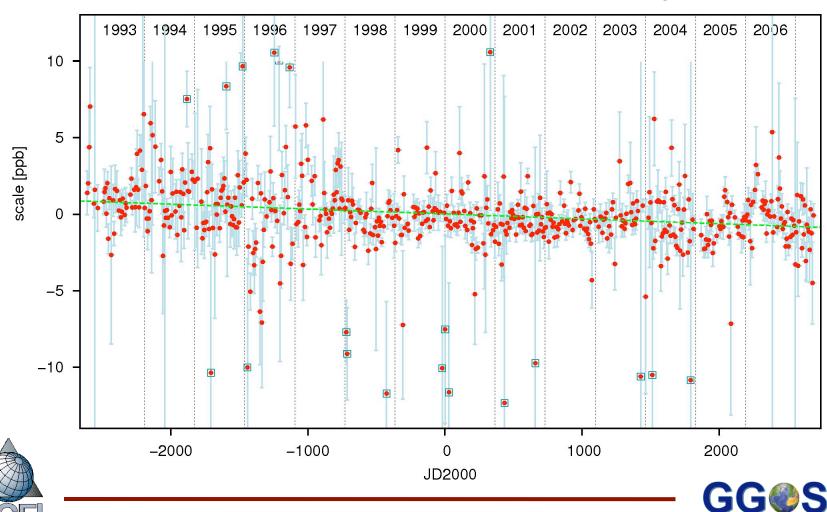
ITRF2005: Time series of station positions and EOP

Techn.	Service / AC	Data	Time Period
GPS	IGS / NRCan	weekly solutions	1996 - 2005
VLBI	IVS / IGG	24 h session NEQ	1984 - 2005
SLR	ILRS / ASI	weekly solutions	1993 - 2005
DORIS	IGN - JPL/LCA	weekly solutions	1993 - 2005

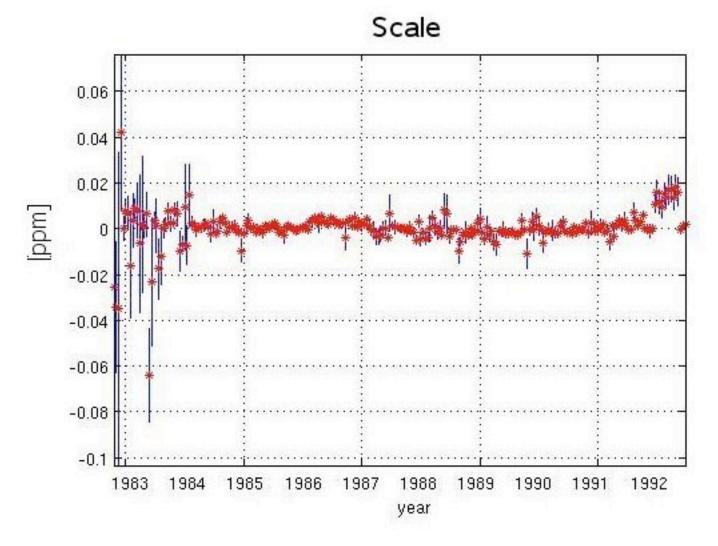
ITRF2005 data sets are not fully consistent, the standards and models were not completely unified among analysis centers

Shortcomings concerning GPS:

- IGS solutions are not reprocessed (e.g., model and software changes)
- Relative antenna phase center corrections were applied

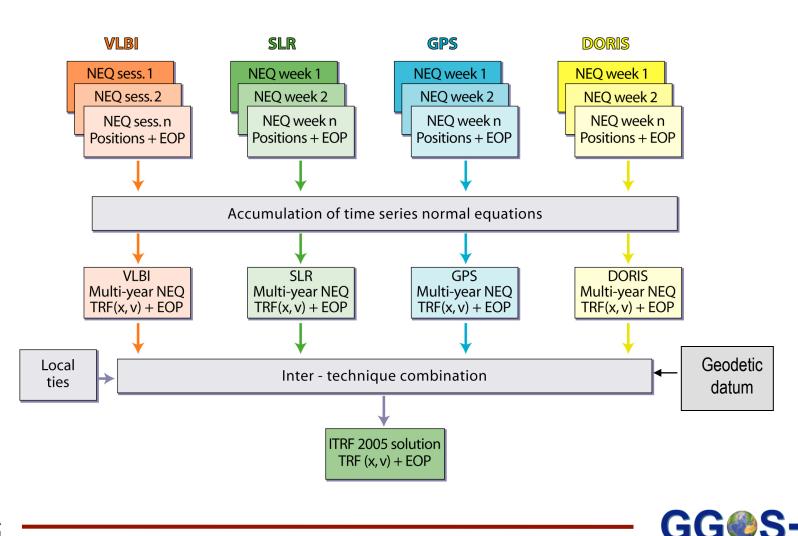

Recent Improvements

- ILRS
 - Reprocessing back to 1983 (not yet ready)
 - Biases under investigation (1993-now)
- IVS
 - Reprocessing with corr. polar tide
 - New trop. models
- IGS
 - New homogeneous time series (only individual GPS series, PDR)
 - Absolute antenna phase centres
- IDS
 - Reprocessing ?



Transformation: ITRF2005 (DGFI SLR Solution) – new corr. DGFI SLR solution

Offset: 0.0 ± 0.1 ppb , drift –0.1 ± 0.03 ppb/year


ILRS "Backward" Processing DGFI results only: Transformation Parameters to SLRF2005

Processing Strategies DGFI TRF

http://www.ggos-d.de

GGOS-D processing 1

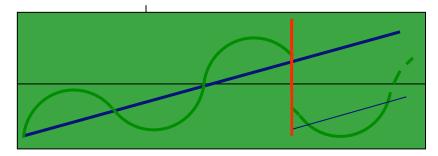
GGOS-D: Time series of station positions and EOP

Techn.	Institutions	Data	Time Period
GPS	GFZ	daily NEQ	1994 - 2007
VLBI	IGG / DGFI	24 h session NEQ	1984 - 2007
SLR	DGFI / GFZ	weekly NEQ	1993 - 2007

Improvements of GGOS-D data compared to ITRF2005:

- Homogeneously processed data sets
 - Identical standards, conventions, models, parameters
 - GPS: PDR (Steigenberger et al. 2006, Rülke et al. 2008)
- Improved modelling
 - for GPS: absolute instead of relative phase centre corr.
 - for VLBI: pole tide model was changed

GGOS-D: German project of BKG, DGFI, GFZ and IGG funded by BMBF



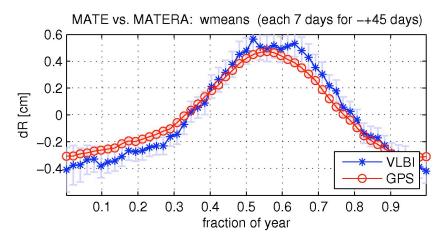
GGOS-D processing 2

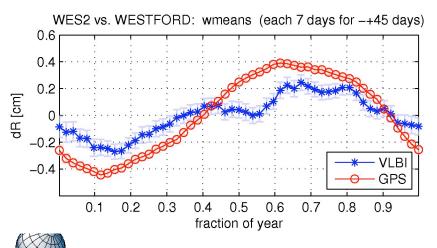
Analysis of station coordinate time series and computation of a reference frame per technique

Modelling time dependent station coordinates by

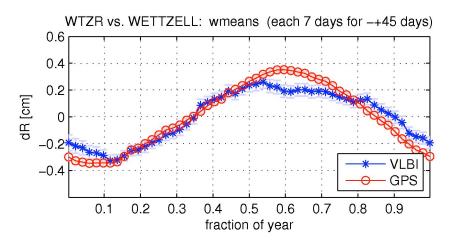
- epoch positions
- linear velocities
- seasonal signals
- discontinuities

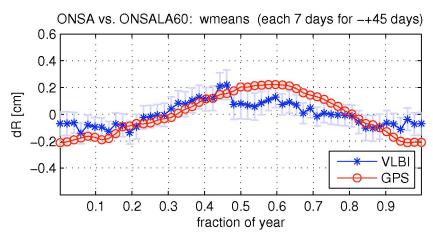
Example: Number of discontinuities that were introduced for the accumulation of the GPS time series:


- ✓ ITRF2005⁻ 221 discontinuities in 332 GPS stations (1996 2005)
- ✓ GGOS-D: 95 discontinuities in 240 GPS stations (1994 2007)



GGOS-D Technique Comparison 2


Mean annual MATERA

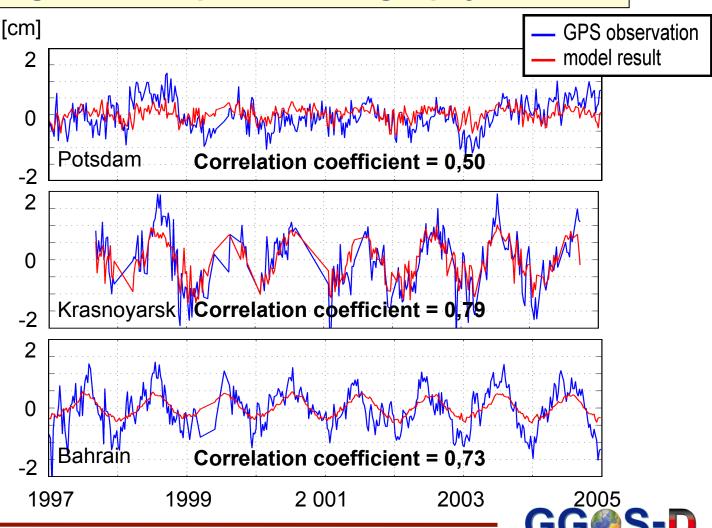

Mean annual Westford

Mean annual Wettzell

Mean annual ONSALA

Future Strategies

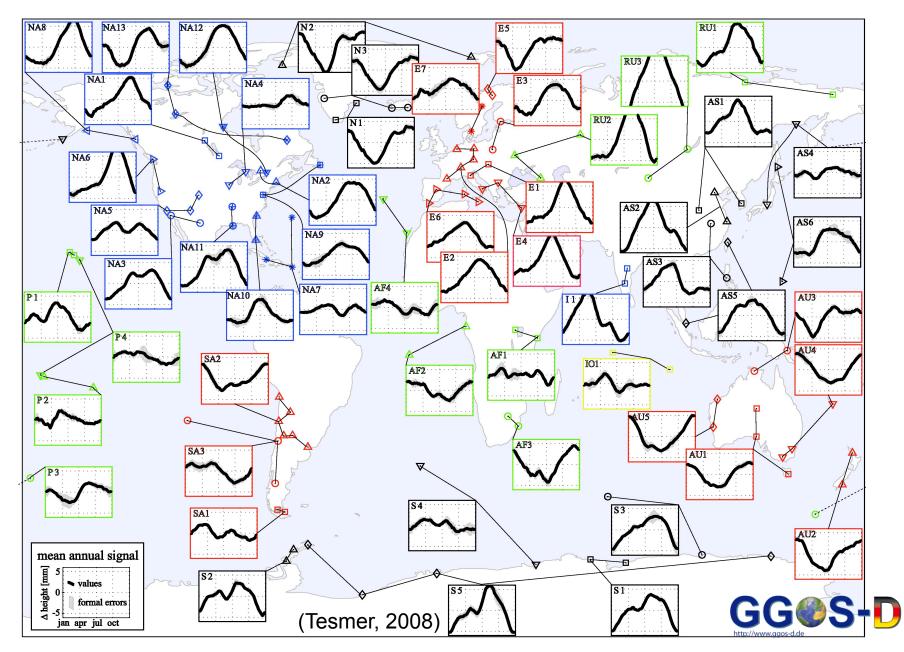
- Unified Models
 - The platform for this activies is GGOS, a component of the IAG
 - First step: Unified Analysis Workshop, Monterey, 2007
- Low degree harmonics
 - Annual signals in the transformation parameters can be gravity induced
- Loading effects (e.g. atmosphere, hydrology)
 - Loading effects are station dependent, can sum up to 2 cm (Brasilia)
 - Blue sky effect; SLR stations observ at clear sky with normally higher air pressure, this can produce a systematic error in height; max 1.45 mm for Borowiec (M. Seitz, 2008)
- Annual station variations?
 - Not all effects can be explained by loading effects
- Local Ties
 - For some sites a resurvey is necessary
 - A better global distribution is required



Annual Signals

Seasonal signals - Comparison with geophysical data

Models consider atmospheric, oceanic and hydrologic mass loads:


NCEP, ECCO, GLDAS

http://www.ggos-d.d

Average Mean Annual Regional Behavior

Conclusion

- A lot of efforts were done to solve the problems discovered in the last ITRF
- Next ITRF will benefit from these investigations
- New concepts are is the test phase
- New models needs to be implemented
- Harmonisation of standards and models is mandatory for the nextITRF

