kHz Single Photon Ranging: **A Precise Tool to Retrieve Optical Response of Satellites**

Toshimichi Otsubo

Hitotsubashi University

Philip Gibbs Graham M Appleby

NERC Space Geodesy Facility

16th International Workshop on Laser Ranging, Poznan, 13-17 Oct, 2008.

kHz & Single Photon !

kHz System:

More shots, More returns (up to LAGEOS?) Sharp pulse width (10 ps at Hx)

Single Photon System:

No intensity dependence \rightarrow Systematic bias minimised Large scatter, but the average profile of return pulse observable

kHz + Single Photon System:

Single Photon + 10 Hz Laser

Single Photon + kHz Laser

Convolution Approach

Otsubo and Appleby (2003, JGR)

Convolution: System noise \bigotimes Satellite response function The result compared with Residual scatter

Residual histogram of satellite returns.

<u>Deconvolution</u> Approach, possible?

This study (2008-, ongoing)

The result can be compared with satellite response function

Deconvolution Test [1] AJISAI

Special postprocess: Loose (10σ) rejection

Deconvolution Test [2] LAGEOS Special postprocess: Loose (100) rejection

Deconvolution Test [3] STELLA Special postprocess: Loose (100) rejection

1200 450 ERS-2 STELLA 400 1000 residual residual 350 histogram histogram 800 300 250 600 ~21h UT ~2h UT 200 2008-09-20 2008-09-21 400 150 100 200 50 manning -0.15 -0.15 -0.10-0.05 0.00 0.05 0.10 0.15 -0.10-0.05 0.00 0.05 0.10 0.15 12 10 8 X axis: residuals 6 (one-way, m) 4 Yaxis: 2 counts -0.15 -0.10-0.05 0.00 0.05 0.10 0.15

4-D Simulation of CCR Response

4-Dimensional Function:

Angle of incidence and azimuth (2-D) Velocity aberration (2-D)

My talk in Session 13 gives more details

Software development at Hitotsubashi University for Single CCR Response (ongoing)

Language: C#

Input:

CCR Shape, Optical Index, Coat, Size, Recession, Dihedral angle

Laser wavelength, Polarisation

Output:

Far-field amplitude

Grid size: 2-deg for angle of incidence, 2-µrad for velocity aberration

> 2 GB in ASCII Text, > 100 MB in Binary (NetCDF) file

Computation time: 6 to 14 hours per reflector ... needs optimisation

Optical Response Function (AJISAI)

Optical Response Function (LAGEOS)

Optical Response Function (STARLT.)

Conclusions & Future works

Nothing conclusive yet...

kHz Single Photon data being obtained at Herstmonceux:

Ideal to retrieve the satellite response function. NOT requires hundreds of passes.

Testing a new data handling procedure - Deconvolution

Targeting direct comparison between '<u>observed</u> response function' and '<u>modeled</u> response function'.

Sensitive to noise data. Sensitive to LPF settings. More tests required.

HIT-U developing software for simulating 4D optical pattern

This is also on-going development.

Many thanks to Herstmonceux crews.

