

The New 100-Hz Laser System in Zimmerwald: Concept, Installation, and First Experiences

Werner Gurtner Eugen Pop Johannes Utzinger

Astronomical Institute, University of Bern, Switzerland

16th International Workshop on Laser Ranging 13–17 October 2008 Poznan

Evaluation of the new laser

- Higher repetition rate:100Hz to few kHz
- Pulse length < 40ps

Seminar 26. Mai 2008

Astronomiches

- Participation in one-way ranging and transponder experiments
 - \rightarrow back to Nd:YAG (532 nm)
 - \rightarrow single pulse energy not to low
- Call for tender December 2006 for Nd:YAG-System
 Four offers:
 - 3 kHz systems (High Q, Time Bandwith, Expla)
 - 1 100 Hz system (Thales)
- Decision: 100 Hz system by Thales with TimeBandwidth Oscillator

- 100 Hz good compromise
 - Limit number of returns to strong targets
 - Total energy: >800 mJ per second (532 nm)
 - Single-shot applications still possible (8 mJ per pulse)
 - Flexibility in applications (firing rate, synchronization)
 - E.g., 28 Hz for LRO

Mai 2008

Seminar 26.

Astronomiches

- Diode-pumped. Promises very stable operation
- Monostatic system: Protection of the receiver against backscatter (-> rotating shutter possible: modulation 100%)
- Two-color ranging: Outcome was not overwhelming
 - Still possible at 1064 nm (pending suitable sensors)
 - Total energy: 1.8 J per second (green + IR)!

UNIVERSITÄ

Protection of the receiver

- Monostatic system
- Protect receiver (SPAD / PMT) from backscatter
- 10 Hz: Rotating shutter
- 100 Hz:
 - Liquid crystal shutter
 - Response time ca. 100 μ s Max. transmission 30 %
 - LC optical gate with polarizer (Degnan)
 - Response time ca. 10 μ s Max. transmission 90%
 - Rather bulky for our system
 - Boost up rotating shutter (600 \rightarrow 3000 or 6000 rpm)

Max. transmission

100%

- Laser ordered end of March 2007 (Delivery: Oct. 2007)
- Additional components:

2008

. Mai

Astronomiches Seminar 26

- Rotating shutter: Inhouse design and fabrication
- New optical components for 532/1064 nm: Mid 2007 till early 2008
- PC card with FPGA by Graz Observatory: Fall 2007
- Pulse distribution comparators (FH Deggendorf): Early 2008
- Implementation of FPGA card and rotating shutter
 Observation with old system until Feb 2008
- Installation new Laser: March/April 2008 (!)
- First echos: April 7 / Routine operation: April 24

UNIVERSITÄ

Upgrade Costs

- Laser
- System modifications
 - New coatings
 - Optical components
 - Electronic components
 - Total

EUR 270'000.-70'000.-

Astronomical Institute University of Bern

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

Laser: Main Specifications (1)

• Technology: Diode pumped solid state laser (DPSSL)

UNIVERSITÄT

Slide

- Pulse generation: SESAM technology oscillator (SEmiconductor Saturable Absorber Mirror)
- Wavelengths: 1064 + 532 nm (Nd:YAG)
- Pulse rate: 90-110 Hz, adjustable with external trigger Additional decimation with pockels cell
- Configuration: Oscillator, regenerative amplifier, multipass amplifier (actual: double pass)
- Pulse energy: >20 mJ @ 1064 nm (actual: 18 mJ) 10 mJ @ 532 nm (actual: 8.3 mJ)
- Pulse width: < 40 ps (FWHM) (actual: 58 ps)

Far-field distribution @ 532 nm

Astronomical Institute University of Bern

b Ũ

UNIVERSITÄT BERN

Laser: Main Specifications (2)

- Pulse contrast: < 1/200</p>
- Beam diameter: 6 mm
- Stability of energy: < 1%
- Pointing stability: < 5 arc sec

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT

Astronomical Institute University of Bern

Astronomiches Seminar 26. Mai 2008

Laser: Main Components

Slide 10

Astronomical Institute University of Bern

AIUB

BERN

Transmit/Receive Switch Mirror

- Laser side: AR coating
- Telescope side: Rmax coating plus elliptic AR coating

- Task: mechanical range gate / window
 - Protects the receiver from backscatter during satellite ranging
 - Opens receiving path only for expected returns
- Disk with two holes right after the field stop (pinhole)
 - \rightarrow Rotating frequency: 50 Hz (=3000 rpm)

2008

Mai

26

Seminar

Astronomiches

- → Speed (r=70mm): 22 mm/ms (=79 km/h)
- → Hole Diameter: 6 mm (open for 280 μ s)
- Driven by DC Servo motor with integrated controller operated in stepper mode
- Tests in closed-loop control showed:
 - Epoch of shutter wrt to return +-50 μs (1% of 10ms)

- Shutter control (by Control PC via FPGA card)
 - Phase and frequency depending on current ranging parameters
- Shutter safety monitor (hardware implemented)
 - Assures that shutter is unintendedly opened at firing time
 - Checks speed and position 2 ms before firing time.
 - Blocks laser if conflict to be expected
 - 1) by disabling pockels cell (Regen)
 - 2) by fast mechanical shutter

Rotating Shutter (3)

Slide 14

Astronomical Institute University of Bern

AIUB

PC Interface Card with FPGA

- Built/programmed by TU Graz (F. Koidl)
- Main functions:
 - Laser firing rate (Period: 9 to 11 ms, Res: 10 μs)
 - Digital range gate/window (2 ch.) (Res: 5 ns)
 - Clock for current epoch (Res: 1 μs)
 - Rotating shutter open pos. epoch (Res: 1 μs)
 - Var. frequency generator for rotating shutter control
 - Laser firing pre-pulses (rot. shutter safety monitoring)
 - Control register to enable
 - Laser pump diodes / Pockels cell / Safety shutter etc.
 - Several auxiliary I/O channels

FPGA PC card (ISA-Bus)

Seminar 26. Mai 2008

Astronomiches

AIUB

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

- FPGA based control unit with clock generator
- Special notebook with LabView user interface for
 - Individual (manual) control of laser components
 - Oscillator, Amplifiers, Masterclock, Control unit
 - TCP/IP server component
- Client program on Linux station computer
 - Connection by TCP/IP over LAN
 - Control commands and status requests
 - Laser ON, OFF, Status, Error resets
- Firing order and pockels cell control by electrical signals from FPGA card on request by Control PC

UNIVERSITÄ

Range Gate Control (Control PC<->FPGA)

- FPGA: generates firing order (defined by Control PC)
- PC: For each laser pulse (100 Hz cycle time):
 - Waits for start pulse flag from FPGA card
 - Immediately reads start epoch

2008

Mai

20

Seminar

Astronomiches

- Computes expected stop pulse epoch from actual start epoch and range prediction
- Sends stop pulse epoch to FPGA
- Keeps start and expected stop pulse epochs in ring buffer for later use

FPGA generates range gate (SPAD) and window (PMT)

- 100 Hz: Whenever flight time is multiple of 10 ms:
 - Stop pulse arrives at same time as a start pulse is generated
 - Receiver will see backscatter of start pulse
 - Receiver could be damaged or at least measurement made impossible
- Avoid overlaps:
 - Cut out parts of the passes (about 5 percent loss)
 - Adjust firing epochs by inserting short delays (Graz)
 - Change firing rate once shortly before overlap would occur (by Control PC via FPGA card)

Calibrations (old - new system)

Astronomical Institute University of Bern

Seminar 26. Mai 2008

Astronomiches

AIUB

 $u^{\scriptscriptstyle \flat}$

UNIVERSITÄT BERN

Range Precision: Good Target

Astronomical Institute University of Bern

Astronomiches Seminar 26. Mai 2008

AIUB

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

Range Precision: Good Target

Satellite: Champ, single-photon mode

AIUB

22

Slide

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT RERN

Range Precision: Lageos

Target signature (retroreflectors at different target depths) plus SPAD asymmetric behaviour

Astronomical Institute University of Bern

Astronomiches Seminar 26. Mai 2008

b

UNIVERSITÄT BERN

Performance on GNSS Satellites (Glonass)

Bin	Number of Obs	Residual	RMS	Residual	RMS	
Number	per Bin	(ns)		(mm)		
1	575	0.007	0.007	1.0	1.1	
2	1348	0.000	0.005	0.0	0.7	
3	1320	0.003	0.005	0.5	0.7	
4	786	-0.018	0.006	-2.8	0.9	
5	1312	-0.001	0.003	-0.2	0.5	
6	2434	-0.002	0.002	-0.3	0.4	
7	970	-0.003	0.004	-0.5	0.7	
8	1918	0.003	0.003	0.5	0.4	
9	3884	0.001	0.002	0.2	0.4	Maximum 13 % return rate
10	3577	-0.002	0.002	-0.3	0.4	
11	3769	0.002	0.002	0.4	0.3	
12	3074	-0.001	0.002	-0.2	0.4	Up to 4000 returns per
13	2217	0.004	0.003	0.7	0.4	normal point
14	3302	0.001	0.002	0.1	0.3	normai point
15	2832	-0.002	0.002	-0.4	0.3	
16	3040	0.000	0.002	0.0	0.3	
17	1703	0.003	0.003	0.4	0.4	
18	1589	-0.006	0.003	-0.9	0.4	
19	1691	-0.002	0.003	-0.2	0.4	
20	3460	0.005	0.002	0.7	0.3	
21	2594	-0.009	0.002	-1.3	0.3	
22	2699	0.001	0.002	0.1	0.3	
23	475	0.003	0.005	0.5	0.7	

Astronomical Institute University of Bern

Seminar 26. Mai 2008

Astronomiches

Performance on GNSS Satellites (Giove-A)

$u^{\scriptscriptstyle \flat}$	
b UNIVERSITÄT BERN	

Bin	Number of Obs	Residual	RMS	Residual	RMS	
Numb	er per Bin	(n	s)		(mm)	
1	53	0.005	0.016	5 0.8	2.4	
2	104	-0.024	0.007	7 -3.6	1.1	
3	1655	-0.003	0.002	2 -0.5	0.3	
4	115	0.011	0.006	5 1.6	1.0	
5	1271	0.002	0.002	2 0.3	0.3	
6	2368	0.006	0.002	2 1.0	0.2	
7	1834	-0.003	0.002	2 -0.4	0.3	
8	1152	0.003	0.002	2 0.4	0.3	
9	830	-0.003	0.003	3 -0.5	0.4	
10	1628	-0.014	0.002	2 -2.1	0.3	
11	117	0.010	0.007	1.5	1.1	
12	1063	0.006	0.003	3 0.9	0.4	
13	2510	0.006	0.002	2 1.0	0.3	Maximum 8 % return rate
14	1682	0.004	0.002	2 0.6	0.3	
15	1606	-0.003	0.002	2 -0.5	0.3	
16	2353	-0.006	0.002	2 -0.9	0.3	
17	294	-0.002	0.006	5 -0.2	0.9	
18	1772	0.003	0.002	2 0.5	0.4	

18 normal points stored. Bin width: 300 sec

AIUB

Astronomical Institute University of Bern

Astronomiches Seminar 26. Mai 2008

Performance on GNSS Satellites (GPS-36)

, , ^b
u
D
UNIVERSITAT
BERN

Bin	Number of Obs	Residual	RMS	Residual	RMS	
Numbe:	r per Bin	(ns)	(mm)	
1	391	0.002	0.002	0.3	0.3	80 deg elev
2	947	0.000	0.001	0.1	0.2	
3	2437	-0.001	0.001	-0.2	0.1	
4	2861	0.000	0.001	0.0	0.1	
5	2870	0.001	0.001	0.2	0.1	Maximum 9 % return rate
6	543	0.003	0.002	0.4	0.3	70 deg elev
7	1835	-0.002	0.001	-0.3	0.2	
8	161	0.001	0.003	0.2	0.5	
9	2127	-0.001	0.001	-0.1	0.2	
10	1213	0.000	0.001	-0.1	0.2	60 deg elev
11	840	-0.001	0.002	-0.1	0.3	
12	1053	-0.001	0.002	-0.1	0.2	
13	1699	0.003	0.001	0.5	0.2	
14	1336	0.001	0.001	0.1	0.2	50 deg elev
15	1912	0.001	0.001	0.1	0.2	
16	1965	-0.004	0.001	-0.6	0.2	
17	413	0.005	0.003	0.8	0.4	
18	1511	0.000	0.001	0.0	0.2	
19	390	0.005	0.003	0.7	0.4	40 deg elev

Slide 26

b UNIVERSITÄ BERN

- 100 Hz Nd:YAG solid state laser system
 - Stable energy and pointing
- 8.3 mJ / pulse @ 532 nm with excellent far field profile
 - Suitable for one-way ranging and transponder experiments
- Single shot RMS: 35 ps / 5 mm @ 532 nm for good targets
- Up to 13% RR on high satellites

Seminar 26. Mai 2008

Astronomiches

- Observation also possible through haze or thin cirrostratus
- Backscatter protection with 100% modulation (rot. Shutter)
 - PMT are also possible detectors
- Prepared for two-colour ranging
 - if a suitable detector is available in future

 \sim

Slide

UNIVERSITÄT BERN

Thank you !

• Time Base

- 5MHz Quartz + Freq. Doubler (Oscilloquartz SA, Neuenburg) free running, compensated only once per day for aging (New: 10 MHz Quartz implemented shortly)
- 10MHz distribution (FH Deggendorf)
- Divider chain and distribution for clock pulses
 - 1 PPS

Seminar 26. Mai 2008

Astronomiches

- 100 PPS
- Other rates
- GPS timing receiver (Truetime) for synchronization by time comparison
- Event timer for start and stop epochs (Riga)

Astronomical Institute University of Bern

UNIVERSITÄT

Rotating Shutter

Slide 30

Astronomical Institute University of Bern

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

Status End of 2007

b UNIVERSITÄT BERN

- Two-color 10 Hz system (Ti:Saph-Laser)
- Accuracy
 - Single-shot 10 mm blue (423nm), 20–25 mm IR (846nm)
 - Range biases: Blue < 1 cm, IR < 2 cm</p>
 - Bias betwen blue and IR 10-15 mm: Origin probably internal IR calibration
 - Maintenance and operation
 - Relatively high maintenance costs of laser
 - Aging of components, difficulty with spare parts
 - Frequent readjustments (every day or every few days)
- Availability
 - Ca. 11 months per year

4 nm 1:650 14 nm 1:195

Seminar 26. Mai 2008

Astronomiches

AIUB

32

Slide

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

Diode current (A)	Pulse width (ps)
1.0	54.7
1.1	52.6
1.2	53.2
1.3	54.9
1.4	54.9
1.5	56.9
1.6	58.3
1.7	60.9
1.8	60.4
1.9	62.8
2.0	61.3

 $u^{\scriptscriptstyle b}$

Slide 33

