Aircraft Avoidance Technologies

Tom Murphy
UCSD

plus
E. Adelberger, J. Battat, W. Coles, C.D. Hoyle, K. Kassabian,
R. McMillan, J. Melser, E. Michelsen, C. Stubbs, H. Swanson,
J. Tu, A. White

Agency Compliance \& Headaches

- For APOLLO, we must interface with four agencies for safety compliance
- FAA (Federal Aviation Administration)
- Holloman Air Force Base
- White Sands Missile Range
- Space Command (satellites)
- The FAA requires two human spotters with eyes on the sky, blocking the laser if an aircraft comes within 25° of the beam, or if the sky is obscured by clouds within 25° of the laser beam
- spotters are difficult to schedule in remote areas
- sometimes they get sick or don't set their alarm correctly
- spotters demand a continual cash-flow for payment
- spotters do not have perfect attention and visual reliability
- Radar systems can be unwelcome at an observatory due to the high power RF interfering with other equipment

Two Complementary Technologies

- APOLLO has chosen to explore infrared and RF transponder technologies for aircraft avoidance
- Infrared (IR) camera with motion-sensing software algorithm
- works well for nearby ($<5 \mathrm{~km}$) aircraft
- works for low aircraft in radar shadow (low \rightarrow close)
- works for low-flying aircraft not required to have transponder
- RF Transponder Detector seeks 1090 MHz signal directionally
- all aircraft above $10,000 \mathrm{ft}$ ($3,048 \mathrm{~m}$: our observatory is at $9,200 \mathrm{ft}$) must have a transponder, unless within $2,500 \mathrm{ft}(762 \mathrm{~m}$) of surface
- transponder transmissions are strong enough to detect very far away (> 100 km)
- system is passive: transponder is continuously interrogated by ground radar systems, and the response is omni-directional: we just listen

IR Camera Details

- Camera, lens, and software produced by Image Labs International, in Bozeman, Montana, USA
- Thermal infrared sensor sees $\sim 300^{\circ} \mathrm{K}$ skin of aircraft against cold sky (effective sky temp at 8-10 $\mu \mathrm{m}<100^{\circ} \mathrm{K}$)
- Field of View is $5^{\circ} \times 7^{\circ}$, operating at video rate of 30 frames per second
- Worst-case angular velocity: aircraft traveling $100 \mathrm{~m} / \mathrm{s}$ (360 kph ; 220 mph) at range of 150 m travels 1.3° per frame period
- software looks for 3 consecutive detections along a line to raise flag
- worst-case stil! shuts laser in time
- Installed on telescope and running at APO, though currently bypassed and cóllecting data

Transponder Basics

- Almost all aircraft carry transponders that respond to ground interrogations by sending out pulse train at $1090 \pm 3 \mathrm{MHz}$
- peak power must be > 70 W ; > 125 W for commercial aircraft
- pulse pattern carries information about either:
- temporary aircraft identity ("squawk code"; called Mode-A)
- encoded altitude (Mode-C)
- depending on what the interrogator asks for (alternates)
- pulse pattern consists of framing pulses plus four 3-bit codes for a total of 4096 combinations

pulses 0.45μ s long, with pulse times given in $\mu \mathrm{s}$. The F1 and F2 framing pulses are always present.
- The transponder signals are omni-directional, so all we need to do is determine if there is a source of 1090 MHz near our beam
- aircraft also may emit strong DME signals near 1090 MHz , and these can leak into our receiver

Patch Antenna Array

- Directional sensitivity can be accomplished via a phased array of patch antennas
- thin patches are inherently narrowband (1% in our case)
- $\sim 7 \mathrm{~cm}$ patches on 10 cm boards are arranged into a 7 -element array spanning $\sim 0.6 \mathrm{~m}$, plus a separate single (OMNI) patch

Front

Back

Beam Patterns

- An individual patch is relatively omni-directional (blue curve)
- The phased array of 7 patches has much higher gain on boresight, and sidelobes elsewhere (red curve)
- The difference at beam center is $11 \mathrm{~dB}=10^{1.1}=13 x$
- Note that the single (omni) patch is always higher than the array sidelobes, but not the main directional beam

The Ratio is the Key

Example: set ratio criterion at 5 dB , and the beam half-width becomes 18°

Implementation

- The array elements are summed, then both array and omni signals are amplified, filtered, then passed to a logarithmic power detector
- thus voltage difference is array/omni ratio
- Decisions are made based on the difference signal, and also on the raw power levels:
DIFF $>$ thresh $_{1} \rightarrow$ in the primary beam
ARRAY < saturation \rightarrow otherwise DIFF not reliable
$\mathrm{OMNI}<$ thresh $_{2} \rightarrow$ if OMNI that hot, shut down for nearby plane
\because Also processor decodes pulse train, and presents for logging

Example Pulse Patterns

- ARRAY > OMNI, so DIFF is large (in beam)
- note raw signals for OMNI and ARRAY are negative-going: negative dips are the signal pulses
- A threshold on the DIFF signal alerts the system that a plane is in the beam
- ARRAY < OMNI, so DIFF < 0
- thus while sginals are present, the DIFF < 0 indicates that the plane is not in the main beam

DME signal works too...

- ARRAY > OMNI, so DIFF is large (in beam)
- A threshold on the DIFF signal alerts the șystem that a plane is in the beam
- Note the flatness of the DIFF signal: the ratio works!
- ARRAY < OMNI, so DIFF < 0
- thus while sginals are present, the DIFF < 0 indicates that the plane is not in the main beam
- Though DME \neq transponder, who cares?! It's still an airplane

Mode-S transmission

5 Sep 2008
$08: 11: 47$

- A new coding of information is sweeping the 1090 airwaves: Mode-S
- Mode-S carries permanent aircraft identity, and higherprecision altitude information
- The top plot is at the same timescale as the previous plots, but to get the whole thing, we have to zoom out (below)
- All the same, these signals trigger the system if the source is in the beam

What Happens Next?

- The prototype is working at UCSD, with a few upgrades in the works
- one such upgrade is splitting the central element to double-task it with the job of being the OMNI antenna - compactifying the arrangement
- Once deployed, we will begin logging data whenever the dome is open, so we build a case to present to the FAA
- Same goes for the IR camera
- Once verified and (hopefully) accepted, we will be able to shed the spotters
- we may get help from the Keck, Palomar, and Lick observatories (among others?) as all are currently using spotters in conjunction with their laser guide star adaptive optics programs

