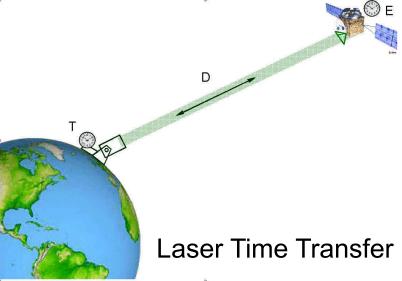
Photon counting detectors for future space missions

Ivan Prochazka, Josef Blazej

Ulrich Schreiber *

presented at 16th International Workshop on Laser Ranging Poznan, Poland, October 13-17, 2008

Czech Technical University in Prague, Prague, Czech Republic * Technical University, Munich, Germany


Outline

Laser Time Transfer and one way ranging projects

Detector requirements

#2

#3

Detector version # 1

low (ISS orbit)

high (GPS orbit)

Lunar orbit (and beyond)

Laser time transfer and one way ranging projects

- Compass M1 Beidou by China laser time transfer GPS like orbit, 21 ooo km range since 2007 (see Yang et all..)
- Atomic Clock Ensemble in Space ACES by Europe laser time transfer, frequency and epoch comparison Columbus-ISS orbit, ~ 400 km range difficult tracking, short passes, high dynamic range launch 2012

 One way laser ranging to Lunar orbiter, German Space Agency positioning, frequency and epoch comparison Lunar orbit, ~ 380 ooo km range launch 2012 (?)

Agency

Detector Requirements sorted according to priority

- 1. Timing stability
- 2. Background photon flux
- 3. Complexity
- 4. Dynamic range
- 5. Lifetime in space
- 6. Timing resolution
- Detection efficiency detector eff.)
- B. Dark count rate

~ 10 ps or higher / depends on mission

operational up to <u>3*10¹² phot./</u>s 1 mm² LOW (Keep it simple in space !)

up to 1:1000 (mission dependent)

no shielding, signal overload, > 5 yrs

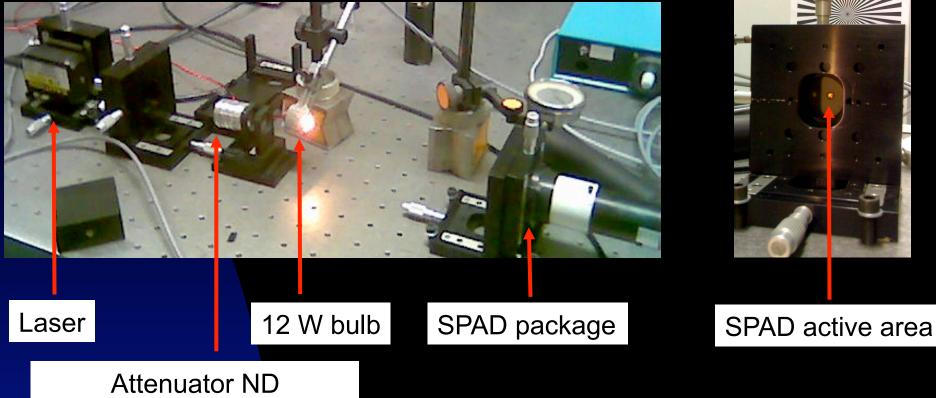
< 100 ps rms

> 0.1 (S/N is independent of

< 1 MHz (high background anyway)

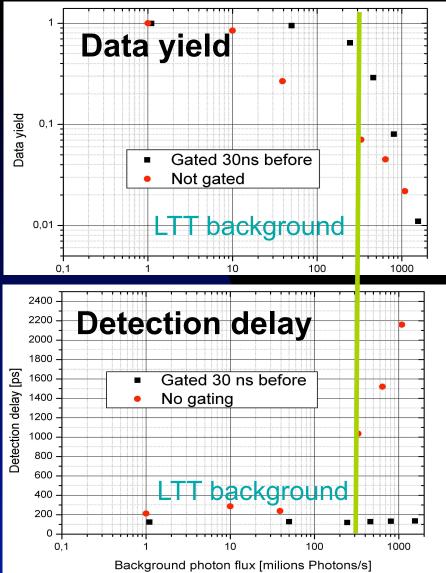
Detector for LTT project, China

- SPAD K14, 25 um diam., dual / redundancy / NO collecting optics, FoV ~30°, 10 nm filter
- Operated 0.7..1.0 Volt above breakdown
- Gated and not gated operation (2008)
- Detection efficiency ~ 0.1
- Jitter
- Stability
 - Dark count rate 10 kHz / +20°C


= > Gating

- < 100 ps
- $\sim 10 \text{ ps}$

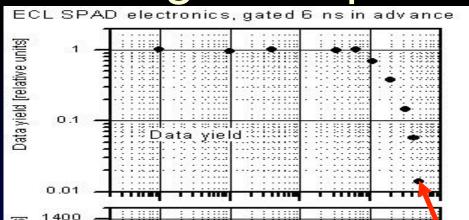
- OPERATING CONDITIONS Signal ~ 1 photon / shot Background flux up to 300 M phot. / s (!) on SPAD input
 - ~ 30 ns before (!)


Detector for LTT project, China Background photon flux tests

=> 1 photon / shot / SPAD

The setup enables ps photon counting with background photon flux levels up to 10¹³ photons / s / mm²
 WARNING do not try the same using PMT (IProchazka, J. Blazej, 16th Worksho on Laser Ranging, Poznan, Poland, Oct. 2008)

Detector for LTT project, China Background photon flux tests # 2



- Gating 30 ns before results in comparison to not gated setup in :
- Data yield increase 3 9 x

Bias reduction 900 ps => 10 ps

Timing jitter independent on flux

Detector for LTT project, China Background photon flux tests # 3

WНМ

iming resolution FWHM [ps]

102

Detection delay

1200

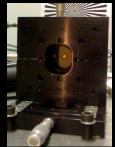
1000 800 600

400

200

2000

1500


1000

500

0

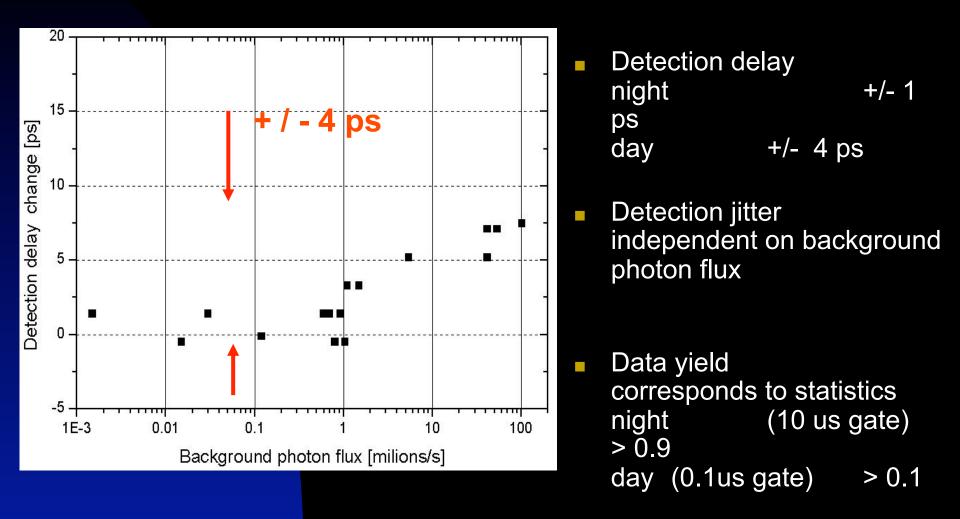
0 2500

- The detector performance was tested in even higher background fluxes 10¹⁰ ph/s hitting SPAD active area
- Gating 6 ns in advance (not realistic for field use)
 - Data yield > 1% at flux <u>5 * 10⁹ photons / s / SPAD</u> see photo

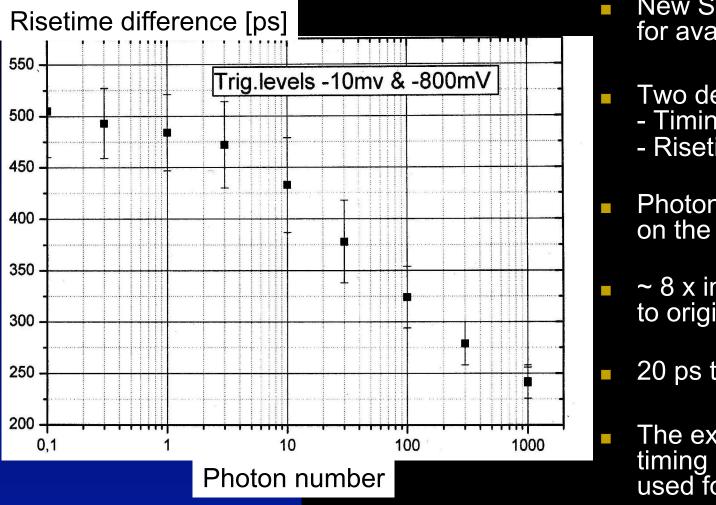
 Timing resolution and detection delay does not change ~ 10 ps

Background photon flux [millions/s] I.Prochazka, J.Blazej, 16th Worksho on Laser Ranging, Poznan, Poland, Oct. 2008

Detector for ACES project, ESA 2012 Atomic Clock Ensemble in Space


- SPAD K14, 200 um, TE3 cooled+ stabilized NO collecting optics, FoV~120deg, 1 nm filter Attenuated ~ 10^4 x
- Operated 5 Volts above breakdown, gated
- Photon number estimate
- Detection efficiency $\sim 0.4 @ 532 \text{ nm}$
- Jitter
- Stability

- < 30 ps ~ 1 ps
- Dark count rate 20 kHz / +20°C
- OPERATING CONDITIONS Signal1 – 1000 photon / shotBackground fluxup to 100 M phot. / s (!)on SPAD input(daytime)~ 100 ns before


(daytime)

 \sim 10 us wide (nighttime)

Detector for ACES project Detection delay versus background photon flux Single photons only

Detector for ACES project Photon number estimate on SPAD

New SPAD electronics for avalanche processing

- Two detector outputs - Timing - Risetime
- Photon number estimated on the basis of risetime
 - ~ 8 x improvement to original Graz scheme
 - 20 ps timing is sufficient
 - The existing on-board timing device 2nd chan used for energy monit.

Detector for Lunar orbiter LEO, DLR

- SPAD K14, 200 um, TE3 cooled+ stabilized NO collecting optics, 10 nm filter
- Operated 3 Volts above breakdown, Gated
- Detection efficiency ~ 0.3 @ 532 nm
- Jitter
- Stability

- < 30 ps
- ~ 1 ps
- Dark count rate 20 kHz / +20°C

- OPERATING CONDITIONS
- Signal
- Background flux
- 1 photon / shot only
- up to 50 M phot. / s (!) on SPAD input

Gate

~ 200 ns before

Conclusion

- Three photon counting detectors have been designed for laser time transfer missions (LTT, ACES) and one way ranging mission (LEO)
- Timing stability 10 to 1 ps half peak to peak and timing resolution 30 to 100 ps rms is achievable
- All the detectors are capable to operate under extremely high background photon flux conditions,
 => photon counting with wide FoV (120°) realistic opt.band-pass filter
- The dynamical range of 1 to 10 ooo photons / echo photon number estimate is available
- Very simple & rugged design