

Mars Laser Ranging Preliminary Results from an Advanced Mission Concept Study

John Degnan (Sigma Space) Ken Nordtvedt (Northwest Analysis) Bob Reasenberg (Harvard/CfA)

University of California, San Diego

Jet Propulsion Laboratory/California Institute of Technology

- Gravity—as we know it—is described by General Relativity (GR)
 - but GR is fundamentally incompatible with Quantum Mechanics
 - gravity is the least well-tested of the fundamental forces
 - the interpretation of dark energy, dark matter pre-suppose that GR is right
- 1 mm laser ranging to Mars (current level: 2 m) enables:
 - testing curvature of space via Shapiro time delay measurements at solar conjunctions: measure γ to 1.4×10^{-7} (currently 2.3×10^{-5})
 - measuring time-rate-of-change of gravitational constant, G to 3×10⁻¹⁵ per year (currently 8×10⁻¹³)
 - separating G-dot from M-dot of sun for the first time
 - most precise test of the inverse square law at \sim 1 A.U. scales
 - test of the Strong Equivalence Principle via polarization of Earth/Mars orbits toward Jupiter: measure η to 5×10^{-4} (comparable to today)
- Demonstrate millimeter-level interplanetary laser ranging capability as prelude to more solar system tests of gravity

Why Mars?

- Mars has 20-year history of range measurements
 - Helps in estimation of longterm/secular effects
- Rich history of technology for Mars landers
 - Many landers & orbiters operated for long times (e.g. Viking)
- Mars distance from Sun compatible with normal electronics & solar power
- On down-side, Mars is more perturbed by asteroids
 - But Earth is also perturbed, so sets lower limit when looking at any solar system body

2008.10.16

Simulated Gravity Parameter Determination

- Simulated Mars laser ranging over 1-6 years of operation based on daily 1 mm ٠ range points
- Currently with 67 asteroid GM estimated (sensitivity shown on next slide) •
- Mars orientation variation currently not modeled, being added in October. ٠
- Other effects being considered; annual variation of surface relative to c.g. ٠
- Estimated parameters include orbital elements, up to 67 individual asteroid GM, ٠ 230 other asteroids in 3 classes with densities estimated

	Parameter	Current Best	1 year mission (1 conj.)	3 year mission (2 conj)	6 year mission (3 conj.)
	γ	2.3×10 ⁻⁵	3.1×10 ⁻⁷	1.4×10 ⁻⁷	7.8×10 ⁻⁸
2×10 ⁻⁷ 10 ⁻¹⁴ yr ⁻¹	β	1×10 ⁻⁴	4.3×10 ⁻⁴	1.7×10-4	8.6×10 ⁻⁵
	J ₂ of sun	2×10 ⁻⁷	6.9×10 ⁻⁸	3.2×10 ⁻⁸	2.1×10 ⁻⁸
	M-dot of sun	_	4.7×10 ⁻¹⁴ yr ⁻¹	1.8×10 ⁻¹⁴ yr ⁻¹	9.4×10 ⁻¹⁵ yr ⁻¹
	G-dot	6×10 ⁻¹³ yr ⁻¹	1.7×10 ⁻¹⁴ yr ⁻¹	2.8×10 ⁻¹⁵ yr ⁻¹	1.0×10 ⁻¹⁵ yr ⁻¹
	η (SEP)	4.3×10 ⁻⁴	1.5×10 ⁻³	5.5×10 ⁻⁴	1.5×10 ⁻⁴

actual magnitude

2008.10.16

 7×10^{-14}

- Only 67 most significant asteroid GM modeled individually
- May need to add more at later date
- Look for saturation of parameter as more asteroids added: means no longer absorbing asteroids into parameter, making parameter estimate seem better than it is

Parameter	11 asteroid GMs	36 asteroid GMs	67 asteroid GMs
γ	7.8×10 ⁻⁸	1.1×10 ⁻⁷	1.4×10 ⁻⁷
β	6.9×10 ⁻⁵	9.7×10 ⁻⁵	1.7×10 ⁻⁴
J ₂ of sun	1.6×10 ⁻⁸	2.5×10 ⁻⁸	3.2×10 ⁻⁸
M-dot of sun	4.1×10 ⁻¹⁵ yr ⁻¹	9.9×10 ⁻¹⁵ yr ⁻¹	1.8×10 ⁻¹⁴ yr ⁻¹
G-dot	2.6×10 ⁻¹⁵ yr ⁻¹	2.6×10 ⁻¹⁵ yr ⁻¹	2.8×10 ⁻¹⁵ yr ⁻¹
η (SEP)	7.5×10 ⁻⁵	1.6×10 ⁻⁴	5.5×10 ⁻⁴

- Phobos (moon of Mars)
 - Landing is not complicated by atmospheric entry, but landing consequently needs more ΔV
 - No dusty atmosphere to scatter light and settle on lander
 - Phobos orbit and physical librations add dynamical complexity to range model, but instead of Mars UT1, polar motion, nutations, and geocenter motion
 - Daily temperature variations larger
 - 4 hr night, 1/3 of Mars, requires less stored power
- Mercury
 - gain in measurement of β and J_2 by roughly 10×, but no appreciable gain in $\gamma,$ G-dot, or η_{SEP}
 - hardships of flight (long), and thermal mitigation on surface
- Inner solar-system asteroid
 - Virtually identical science results as to Mars, but with fewer close conjunctions (so γ not as good)

- MLRT instrument requirements drivers include:
 - operation within 2° of sun
 - Megaphoton/sec background rates, even with narrowband filter
 - Multi-pixel photon counter to cover full Earth FOV with per-pixel precision timing
 - 230 µrad FOV at Mars closest range
 - Earth tracking
 - Coarse gimbal pointing and wide FOV Earth image acquisition
 - Point-ahead angle
 - Up to 328 µrad with 0.35 nrad/sec maximum slew rate
 - Mars surface environment
 - Wind, dust, day/night temperature cycling
- And of course low mass and power

Aperture	12 cm	
Transmit Beam Divergence	160 µrad	
Timing Receiver FOV	230 µrad	
Acquisition FOV	4 mrad	
MLRT Laser Transmitter Power	250 mW	
Ranging duration per Sol	1 hour	
Lifetime	> 3 years	

IWLR 16, Poznan

MLR Ranging Components

• Earth side

- 1 m telescopes, subset of the SLR network
 - Transmits 1 KHz / 3 mJ / 12 ps pulses at 532 nm
 - 25 µrad transmit beam divergence
 - Photon counting detection of received 1064 nm signal from Mars using InGaAsP intensified photodiode (35% SPDE)
 - Solar rejection filter across telescope aperture for operations to 3° of sun

• Mars side

- Landed asset: Mars Laser Ranging Transceiver
 - Transmits 1 KHz / 0.25 mJ / 12 ps pulses at 1064 nm
 - 160 µrad transmit beam divergence
 - Photon counting detection of received 532 nm signal from Earth using Si GM-APD (50% SPDE)
 - Solar rejection filter for operations to 2° of sun

Prototype 1.5 m diameter solar protection filter

Intensified Photodiode SPDE at 1064 nm

Ranging Parameters/Geometry

₹UCSD

٠

MLR Link Description

Earth to Mars

Mars to Earth

Worst case link conditions coincide with some of the best science data acquisition

 Operations at solar conjunctions to 2° of sun

worst nominal worst nominal							
	worst	nominai	.,		worst	nominai	.,
Input Parameters	case	case	units	Input Parameters	case	case	units
wavelength	532	532	nm	wavelength	1064	1064	nm
transmit power	3	3	W	transmit power	0.25	0.25	W
tx throughput	0.5	0.5		tx throughput	0.5	0.5	
tx beam divergence	25	25	urad	tx beam divergence	160	160	urad
tx pointing loss	-2	-2	dB	tx pointing loss	-2	-2	dB
tx atmospheric loss	-3	-2	dB	tx atmospheric loss	-3	-2	dB
tx PRF	1	1	KHz	tx PRF	1	1	KHz
rx atmospheric loss	-4.3	-3	dB	rx atmospheric loss	-1.5	-0.6	dB
rx diameter	0.12	0.12	m	rx diameter	1	1	m
rx throughput	0.3	0.3		rx throughput	0.3	0.3	
rx detector FOV	230	230	urad	rx detector FOV	20	20	urad
rx detector SPDE	0.4	0.4		rx detector SPDE	0.35	0.35	
			W m-2 sr-1				W m-2 sr-1
Earth background	32	24	um-1	Mars background	20	20	um-1
	1100	05	W m-2 sr-1	Eautha a la cua aliana a	1000	<u> </u>	W m-2 sr-1
Mars sky radiance	1100	95	um-1	Earth sky radiance	1200	60	um-1
	0.2	0.2	nm		0.2	0.2	
range Derived	2.6	1	AU	Tange Derived	2.0	I	AU
Beremetere				Derived			
Parameters	0.705.40	0 70 5 40		Parameters			-
photon energy	3.73E-19	3.73E-19	J	photon energy	1.87E-19	1.87E-19	J
space loss	-164.2	-155.9	aB	space loss	-161.9	-153.6	aB
rx signal power	1.34E-17	1.54E-16	VV	rx signal power	3.61E-18	3.78E-17	VV
Earth angular dia.	32.8	85.2	urad	Mars angular dia.	17.5	45.5	urad
Earth background	7.78E-14	3.94E-13	W	Mars background	1.26E-12	1.26E-12	W
Mars sky radiance	1.32E-10	1.14E-11	W	Earth sky radiance	7.54E-11	3.77E-12	W
Summary Results				Summary Results			
incident signal	4.03E-18	4.62E-17	W	incident signal	1.08E-18	1.13E-17	W
incident noise	3.95E-11	3.53E-12	W	incident noise	2.30E-11	1.51E-12	W
SNR	-69.9	-48.8	dB	SNR	-73.3	-51.2	dB
detected signal	4.313	49.515	Hz	detected signal	2.032	21.275	Hz
detected noise	42.329	3.780	MHz	detected noise	43.115	2.827	MHz

IWLR 16, Poznan

MLRT Architecture

MLRT Instrument

- The MLRT instrument comprises a gimbaled optical head and a body-mounted opto-electronics box
 - 12 cm receive aperture
 - 8 mm sub-aperture transmit beam

MLRT Optical Channels

MLRT Gimbaled Optical Head

MLRT Telescope Cross-Section

IWLR 16, Poznan

Mars Environment Challenges

- Dust is the major concern for **Mars surface operations**
 - Will contaminate entrance • window and solar panels
 - Telescope is shuttered closed • between ranging sessions
 - Dust accumulation limits • mission lifetime
 - Creates large sky radiance and ۲ signal attenuation

Condition	Zenith Attenuation	OD	Estimated Occurrence
Mars Clear Sky	-0.85 dB	0.2	20% of time
Mars Nominal Sky	-3.0 dB	0.69	50% (Median)
Moderately High Attenuation	-4.3 dB	0.99	~30% of time

2008.10.16

IWLR 16, Poznan

₹UCSD

- Laser Ranging to Mars offers significant potential for improving tests of gravity
- 1 mm ranging should be possible, with photon link rates spanning a few Hz to kHz
- A baseline instrument exists, complete with mass, power, and price estimates
- We are continuing to refine studies of the instrument and science case, with a final report to be produced in early 2009