ILRS Web Site Update: Using the ILRS Web Site to Monitor Performance

C. Noll (1), **M. Torrence** (2)

(1) NASA Goddard Space Flight Center, Code 690, Greenbelt, MD 20771, USA Carey.Noll@nasa.gov/Fax: 301-614-6015

(2) SGT, Inc., 7701 Greenbelt Road, Suite 400, Greenbelt, MD 20770, USA mark.h.torrence.1@gsfc.nasa.gov

Abstract

The ILRS Web site, http://ilrs.gsfc.nasa.gov, is the central source of information for all aspects of the service. The Web site provides information on the organization and operation of ILRS and descriptions of ILRS components, data, and products. Furthermore, the Web site and provides an entry point to the archive of these data and products available through the data centers. Links are provided to extensive information on the ILRS network stations including performance assessments and data quality evaluations. Descriptions of supported satellite missions (current, future, and past) are provided to aid in station acquisition and data analysis. This poster will detail recent improvements made in several areas of the ILRS Web site including specific examples of key sections and webpages.

Station Performance Report Cards

The ILRS performance "report cards" are issued quarterly by the ILRS Central Bureau (CB). These reports tabulate the previous 12 months of data quality, quantity, and operational compliance by station. The statistics are presented in two tables (one for artificial satellites and a second for lunar reflectors) by station and sorted by total passes in descending order. Plots of data volume (passes, normal points, minutes of data) and RMS (LAGEOS, Starlette, calibration) are created from this information and available on the report card Web site. An excerpt from Table 1 of the 2008 second quarter report card (01-Jul-2007 through 30-Jun-2008), is shown in Figure 1; the full report card can be found on the ILRS Web site at: *http://ilrs.gsfc.nasa.gov/stations/site_info/global_report_cards/perf__2008q2_wLLR.html*.

Site Information		Data Quality											
Column 1	2	3	4	5	6	7	8	9	10	11	12	13	14
Location	Station Number	LEO pass Tot	LAGEOS pass Tot	High pass <u>Tot</u>	<u>Total</u> passes	LEO NP	LAGEOS	High NP	Total	Minutes of	Cal.	Star	LAG
Baseline		1000	400	100	1500	<u>10tai</u>	INF IOLAI	IUtal			<u>rtivio</u>	KIVIS	KIVIS
Yarragadee	7090	9638	1988	1373	12999	204021	25377	12731	242129	166320	4.7	8.9	9.4
San_Juan	7406	5255	1082	1303	7640	84520	13173	8659	106352	92649	13.1	13.9	15.2
Mount_StromIo_2	7825	5297	1274	484	7055	70033	12860	3586	86479	66201	3.1	4.2	5.8
Graz	7839	4651	740	519	5910	92498	8291	4272	105061	61353	1.9	3.4	5.2
Wettzell	8834	4094	1033	411	5538	43417	7905	1727	53049	38825	4.6	12.1	19.1
Herstmoncex	7840	3881	888	374	5143	61069	10396	1582	73047	44178	7.3	12.1	15.4
Changehun	7237	3054	503	570	5117	44205	4953	2970	52128	37099	13.0	13.8	16.7

Figure 1. Table 1 of the ILRS Report Card for the second quarter of 2008.

Summary plots for the values in columns 3-14 of Table 1 of each report card are also linked and available. Examples of selected plots are shown in Figure 2.

Figure 2a. Total passes for the second quarter of 2008.

Figure 2b. Total minutes of data for the second quarter of 2008.

A third table in each ILRS report card summarizes the orbital analysis of the data as performed by five AC/AACs (DGFI, Hitotsubashi University, JCET, MCC, and the Shanghai Astronomical Observatory). An example of this table (Table 2) is shown in Figure 3; Figure 4 shows an example weekly report from Hitotsubashi University used in the computation of this summary table.

Site Informat	DGFI Orbital Analysis			<u>Hitotsubashi Univ.</u> Orbital Analysis			JCET Orbital Analysis				MCC Orbital Analysis				<u>SHAO Orbital</u> <u>Analysis</u>						
Station Location	Station Number	LAG NP RMS (mm)	short term (mm)	long term (mm)	% good LAG. NP	LAG NP RMS (mm)	short term (mm)	long term (mm)	% good LAG. NP	LAG NP RMS (mm)	short term (mm)	long term (mm)	% good LAG. NP	LAG NP RMS (mm)	short term (mm)	long term (mm)	% good LAG. NP	LAG NP RMS (mm)	short term (mm)	long term (mm)	% good LAG. NP
Baseline		10.0	20.0	20.0	95	10.0	20.0	20.0	95	10.0	20.0	20.0	95	10.0	20.0	20.0	95	10.0	20.0	20.0	95
Yarragadee	7090	2.8	23.8	3.6	100.0	1.7	8.4	2.1	100.0	3.1	18.1	3.6	99.8	2.1	10.7	1.8	98.6	2.1	12.7	1.5	95.6
San_Juan	7406	6.3	34.3	5.5	99.4	4.6	22.7	10.4	99.2	5.4	18.5		94.3	6.3	19.3	10.9	96.5	5.1	26.2	3.4	94.2
Mount_StromIo_2	7825	2.9	20.2	5.5	99.2	2.8	8.8	5.6	99.7	3.6	16.6	3.0	99.3	3.2	14.7	4.5	96.0	2.5	13.0	2.7	96.0
Graz	7839	1.7	13.4	4.1	100.0	1.1	6.8	2.3	100.0	2.1	15.1	4.0	99.5	2.2	6.5	3.2	98.9	1.2	11.5	2.5	96.1
Wettzell	8834	3.2	24.2	16.0	99.9	3.1	13.4	8.8	99.8	3.6	17.4	4.4	97.5	3.1	13.2	1.9	97.0	2.4	21.5	4.7	95.6
Herstmoncex	7840	2.9	22.2	7.3	100.0	2.1	8.4	2.5	100.0	3.1	15.3	4.4	99.4	2.8	8.4	1.7	98.1	2.0	13.9	1.8	94.6
Changchun	7237	7.2	28.5	9.6	100.0	7.0	22.2	17.3	100.0	6.4	22.2	6.0	97.6	7.6	22.0	6.4	94.0	5.9	28.1	9.6	98.4

Figure 3. Table 3 of the ILRS Report Card for the second quarter of 2008.

The report card is used to assess the performance of the stations in the ILRS network. The CB maintains lists of the operational and associate stations, classified according to the results posted in the ILRS report cards. Performance guidelines, defined on the ILRS Web site, cover yearly data quantity (number of passes), data quality (normal point precision and short and long term bias stability) and operational compliance factors (timely data delivery, correct data formatting, required station documentation). Current operational vs. associate status can be viewed on the ILRS Web site at: *http://ilrs.gsfc.nasa.gov/stations/*.

# @createdAt	2008/08/13	00:31:48																
#																		
# each line co	ntains:																	
# sat	= 4-char	satellit	e nar	ne														
# site	= 4-char	site nam	ne (CI	OP ID)														
<pre># date/time</pre>	= pass s	ass starting time																
# dur	= pass d	ass duration (min) with l gime error																
# rb	= estima	stimated range blas (mm) with 1-sigma error																
# tb	= estima	estimated time bias (microsec) with 1-sigma error																
# prec	= post-f:	post-fit scattering rms (mm)																
<pre># bad/total</pre>	= number	= number of bad/total normal-points																
# rms	rms = single-shot rms (mm)																	
<pre># pres/temp/</pre>	humi = pressu:	re (hPa),	temp	perature	(K) and humi	dity (%)												
<pre># sdelay</pre>	= applied	d system	delay	7 (mm)														
# shft	= system	delay sh	ift ((mm)														
# rms	= calibra	ation sin	igle-s	shot rms	(mm)													
# cfg	cfg = system configuration flag; SCH and SCI																	
# r	= data re	elease fl	.ag															
# wlen	= laser v	wavelengt	h (nr	n)														
#																		
# 1824 = KIEV																		
# sat site	date time	dur rb	mm	error	tb us	error	pr	ec b	ad t	otal	rms	pres	temp	hum	sdelay	shft	rms cfg r	wlen
ENVI 1824 200	8/07/29 18:38	5 -	-141	(65)	-56.2	(15.8)	28	0 /	16	41	998.6	289.1	59	16638	19	39 0 2 0	532
ERS2 1824 200	8/07/29 19:09	4 -	.101	(71)	-60.3	(19.5)	28	0 /	19	42	998.6	288.5	61	16637	14	39 0 2 0	532
ENVI 1824 200	8/07/29 20:19	4	21	(148)	-54.9	(72.5) 1	111	1 /	8	45	999.3	288.3	60	16637	14	39 0 2 0	532
ERS2 1824 200	8/07/29 20:51	1	-9	()		()	0	1 /	2	39	999.3	288.0	61	16644	0	42 0 2 0	532
STEL 1824 200	8/07/30 00:04	3	-98	(46)	-33.5	(19.3)	14	0 /	9	42	999.3	286.2	71	16637	22	43 0 2 0	532
LAG1 1824 200	8/07/30 00:41	2	-36	(79)		()	62	0 /	3	53	999.9	286.0	71	16638	20	43 0 2 0	532
ENVI 1824 200	8/07/30 18:08	4	-25	(23)	-43.2	(7.0)	5	1 /	8	42	996.6	291.4	51	16554	0	25 0 2 0	532
LAG2 1824 200	8/07/30 18:37	14	223	(52)	-22.4	(85.6)	14	0 /	9	69	996.7	291.3	51	16554	0	25 0 2 0	532
LAG1 1824 200	8/07/30 19:09	20	178	(60)	-38.1	(53.6)	32	0 /	12	58	996.8	291.3	52	16554	0	25 0 2 0	532
ENVI 1824 200	8/07/30 19:46	5 -	100	(35)	-51.3	(8.8)	17	0 /	24	44	997.0	291.2	53	16554	0	25 0 2 0	532
ERS2 1824 200	8/07/30 20:21	1 -	.317	(118)		()	31	0 /	6	54	997.3	290.1	53	16554	0	25 0 2 0	532
LAG1 1824 200	8/07/30 22:45	22	15	(67)	-74.5	(41.1)	18	1 /	11	55	997.0	288.5	59	16631	0	29 0 2 0	532
ENVI 1824 200	8/07/31 19:20	1 -	450	(14)		()	4	0 /	7	35	1002.6	290.6	58	16384	0	36 0 2 0	532
ERS2 1824 200	8/07/31 19:45	5 -	130	(22)	-54.4	(4.3)	9	0 /	15	39	1002.6	290.5	59	16377	15	30 0 2 0	532
STEL 1824 200	8/08/01 00:50	6	-89	(44)	-29.3	(8.8)	25	0 /	14	31	1002.6	287.9	68	16364	10	28 0 2 0	532
STRL 1824 200	8/08/01 01:18	3	-65	(50)	-43.1	(21.9)	13	0 /	8	30	1002.6	287.7	68	16364	10	28 0 2 0	532
ENVI 1824 200	8/08/01 18:45	2	-73	(6)		()	2	0 /	10	38	998.3	292.3	47	16395	0	29 0 2 0	532
:																		
•																		

Figure 4. Example of weekly station bias report from Hitotsubashi University.

Real-Time Daily Station Status Reports

Station status information is available on a daily and near-real time basis through the EUROSTAT utility. These reports allow the ILRS community to quickly view the status of the stations in the tracking network. ILRS stations can automatically upload status information to EUROSTAT (maintained by the Astronomical Institute of the University of Berne, AIUB) that is then used to generate an overview of the current activities of the tracking stations. The real-time report (Figure 5) shows actual station operations at that point in time. The daily report (Figure 6) provides a one-line entry per day showing if stations are currently staffed, operational, off-shift, off-line because of system problems, etc. The ILRS would like to encourage all stations in the network to participate in the daily and, if possible, real-time exchange of status information.

Station-Specific Performance Charts

To further aid analysis by station operators and users, the ILRS Central Bureau generates data plots summarizing station performance and environmental parameters. These plots, created for each active station in the network, are accessible through the Stations section of the ILRS Web site. After selecting a station, the user is presented with several tabs. The "LAGEOS Performance" tab will yield several plots created to summarize station performance on LAGEOS: RMS, calibration RMS, system delay, observations per normal point, and full-rate observations per pass. For each parameter, two plots are generated, one covering the last year and a second showing the information from 2000 to the present. Examples of these plots for selected stations in the network are shown in Figure 7.

SLR Observatories: Current Status													
SLR Observatories: Surrent													
SLR Observatories: Current													
Ftlrs_Ajacci	2008-09-17	19:57:33	lageos1	CUR	0	HTS7611	0.000						
Herstmonceux	2008-09-17	19:56:56		OUT									
Potsdam-3	2008-09-17	19:57:01		OUT									
San_Fernando	2008-09-17	19:57:36		OUT									
Wettzell	2008-09-17	19:57:11	Larets	LST	36	HTS7611	0.000						
Yarragadee	2008-09-17	19:57:40	Lageos2	CUR	2	HTS7601	0.000						
Zimmerwald	2008-09-17	19:57:48	Lageos1	CUR	8405	HTS7611	0.000	(auto)					
								1					

Figure 5. EUROSTAT real-time station status report.

00	O O http://aiuli3.unibe.ch:8000/slr/daystatus.y08															
→ C 🔂 + A A 🖓 http://aiuli3.unibe.ch:8000/slr/daystatus.y08 • Q- Google																
http	://aiuli3.unibe.ch	1:8000.														
DOY	Date	BURF	CONL	FTLR	GRZL	HERL	матм	MDOL	POT3	POTS	SFEL	TEST	WETL	YARL	ZIML	\cap
261	17-Sep-2008		OUT	OPER	OPER	OPER	OPER		OPER		OUT		OPER	OPER	OPER	
260	16-Sep-2008		OUT	OPER	OPER	OPER	OUT	OPER	OPER		OPER		OPER	OPER	DOWN	
259	15-Sep-2008		OUT	OPER	OUT	OPER	OPER		OPER		OPER		OPER	OPER	DOWN	
258	14-Sep-2008			OPER	OUT	OPER			OUT		OPER		OPER	OPER	DOWN	
257	13-Sep-2008			OPER	OUT	OPER	OPER		OPER		OPER		OPER	OPER	DOWN	
256	12-Sep-2008			OPER	OPER	OPER	OPER		OPER		OPER		OPER	OPER	DOWN	
255	11-Sep-2008			OPER		OPER	OPER		OPER		OPER		OPER	OPER	OPER	
254	10-Sep-2008					OPER	OPER		OPER		OPER		OPER	OPER	OPER	
253	09-Sep-2008					OPER	OPER		OPER		OPER		OPER	OPER	OPER	
252	08-Sep-2008		OUT			OPER	OPER		OPER		OPER		OPER	OPER	OPER	×.
251	07-Sep-2008					OUT	OPER		OPER				OPER	OPER	OPER	Ŧ
																11

Figure 6. Daily station status report (for Sept. 17, 2008).

The "Satellite Data Info" tab shows a table of plots providing statistics on all currently tracked satellites as a function of time; full-rate observations per normal point and normal point rms are also computed as a function of range and time. Examples of these satellite plots for a selected station in the network are shown in Figure 8. These plots are also accessible through the Satellite Missions section of the ILRS Web site (organized by mission, matrix of all stations tracking mission).

The "Meteorological Data" tab presents plots of environmental parameters: temperature, humidity, and pressure; plots spanning the last year and since 2000 are also created for this category. Examples of these met data plots are shown in Figure 9.

Figure 7a. Average number of LAGEOS observations per normal point at Herstmonceux for the past year.

Figure 8a. GRACE-A normal point RMS at Herstmonceux (as a function of local time) for the past year.

Figure 9a. Average temperature at Herstmonceux for the past year.

Figure 7b. Average LAGEOS pass RMS at Herstmonceux for the past ten years.

Figure 8b. GRACE-A normal point RMS at Herstmonceux (as a function of range) for the past year.

Figure 9b. Average humidity at Herstmonceux for the past year.