A Satellite Tracking Demonstration On

Ground Using a 100mm Class Aperture Optical Antenna for Space Laser

Communication

H. Kunimori, M.Okawa, H.Watanabe

National Institute of Information and Communications Technology
(NICT), Japan and
Y. Yasuda

Emeritus Waseda University, Japan
1 Introduction
2 NeLS Optical Terminal (OE)
3 Tracking Demonstration by partly use of NeLS-OE
4 OICETS Sat.-Ground experiment

Nict

-Introduction-

History of Optical Tracking and Laser Commnication at NICT(CRL/RRL)

NeLS: Next Generation LEO System Goal

-The Next Generation LEO System Research Center (NeLS) Research Center in National Institute of Information and Communications Technology (NICT), of Japan, formed in 1997, and since 2002, has been focusing on the development of optical inter-s atellite link technology for the future satellite communic ation demanding a high data transmission for global multimedia service, including science data downlink requirement.

NeLS OE Project Schedule

FY2002

NeLS Optical Terminal

NeLS Optical terminal was designed for 1.5 um wavelength and 2.4 Gbps data rate communication between 500 km - 3000 km inter-satellite link. It consists of four subsystems, as shown in Fig.1, 1)Coarse Pointing Mechanism (CPM), 2) Fixed Optical part (Antenna and FPM optics on Bench), 3) AT\&P electronics Unit for Acquisition, Tracking and Pointing control, and 4)Communication Unit.

10 cm class Coarse Pointing Mechanizm (CPM)

Type Elbow

- Optical Antenna fixed to satellite body
- Moving part: two flat mirrors for guiding light through 45deg incident angle on each gimbal axis
- Cover all direction in space

Item	Specification
Range of drive axis	Az:+/-275deg EL:+/-110deg
Maximum drive speed	3.0deg(slew) 1.0 deg (track)
Effective aperture size	85 mm
Resolution of encorders	$2 / 10000 \mathrm{deg}$
Weight	16 kg

Nict Subsystem: OPTICAL ANTENNA -NeLS Termianl-

Optical Antenna
Type: Cassegrain
Tripod supports
structure for secondary mirror
125 mm diameter
Material:SiC
Gold Coating
TFl:2600mm

Nict Key components internal optics -NeLS Termianl-

Fine Pointing Mirror (FPM)

Transmitting Fiber Coupler (left) Receiving Fiber Coupler\& QD (right)

Goal of ground test

- Evaluate ATP Performance and Communication performance Near field (range 5m-4km)
- Validate Open Loop tracking capability using CPM and Optical Antenna by Associated Satellite Laser Ranging subsystem.

MiC7 Utility development for Ground experiment -Ground Test-

Nict
 Utility development for Ground experiment

-Ground Test-

Mobile Dome

The $15^{\text {th }}$ International Laser Ranging Workshop Canberra,

MiC7 Configuration of Optical comm. and SLR equipments

 -Ground Test-

The $15^{\text {th }}$ International Laser Ranging Workshop Canberra,
-Ground Test-

Dome at building Koganei

Oct.15-20,2006

NiCT
 LEO Tracking follow-on error evaluation by Starlette 85 -Ground Test- $-\frac{\text { deg ele vation pass }}{}$

Black dot: Following Error Axis range+- 15 arcsec
Red dot error RMS(2sec avarage) Axis range 0-10arcsec

[^0]EL axis:
< 2arcsec rms except around zenith about 6 arcsec rms
 SLR Pass List during Optical terminal validation phase -Ground Test-

Nict OICETS: VIEW of CCD Camera

- At Koganei 1.5m telescope on March 29, 2006
- Up to September, BER 10-5 in both Downlink(50Mbps) and Uplink(2Mbps) channel.

OICETS:

Received power stability through atmosphere
Received FPS power at OICETS uplink

The $15^{\text {th }}$ International Laser Ranging Workshop Canberra,

Summary

- The Next Generation Inter-satellite LaserCom. (NeLS) Terminal Optical Part Engineering Model has been developed.
- By using newly developed utility for ground test validation, such as 4 axis motion table , mobile dome, optical terminal for 1.5 um wavelength and 2.4 Gbps data rate was evaluated in nearfield ($5 \mathrm{~m}-5 \mathrm{~km}$) including ATP performance with atmospheric existence.
- Using Coarse Pointing Mechanism (CPM) and 10 cm class Optical antenna and, and associated 532 nm pulse laser connection pass, we have demonstrated open-loop tracking capability by ranging to AJISAI.
- The present generation of LaserComm satellite (OICETS) results including atmospheric effect bliefly shown.
- Next Step is now using evaluation of those, we are proposing the next generation of DRTS(Data Relay Technology Satellite) in early 2010's

[^0]: AZ axis:
 <1arcsec rms except around zenith about $10 \operatorname{arcsec} \mathrm{rms}$

