

New Application for kHz Laser Ranging: Time Transfer via AJISAI

Toshimichi Otsubo, Hiroo Kunimori and Tadahiro Gotoh

National Institute of Information and Communications Technology

15th International Laser Ranging Workshop, Canberra, 17 Oct 2006

Ajisai for time transfer

Proposal: Kunimori et al. (Annapolis Workshop, 1992)

Between common-view stations

R = 8.5-9 m

- Reflection from mirrors
- **Unlimited lifetime**
- Purely geometric

Experiment Plan

Two-way time transfer: Kunimori et al. (1992)

Formulation

It has been difficult, but

Timing

Signal-transfer geometry is satisfied just for **5 to 10 ms**.

(compare: **100 to 200 ms** time interval of 5-10 Hz rep. lasers)

This happens 3 times per Ajisai's spin period (currently ~ 2 s).

System

Need to detect a pulse coming from a remote station

- \rightarrow Synchronise the timing of laser hitting the satellite.
- \rightarrow Or, Set multiple range gates by exchanging firing info.

Link

1 to 10 photons for a 100 mJ/pulse laser.

Dual (A \rightarrow B and B \rightarrow A) two-way range obs required.

Event timer

helps a lot.

0.005 ~ 0.05

photons/pulse

with kHz laser

Single + SLR

will do.

Experiment Plan

One-way + SLR time transfer: this study (2006)

New idea (2006): Formulation

A two-way range minus an SLR observation. (no need for dual two-way ranges)

$$\rho_{A \to B} - \rho_{B \to B}$$

$$= t_R (A \to B) - t_T (A) - t_R (B \to B) + t_T (B)$$

$$\vdots$$

$$= \Delta T_{B-A} + [D_{A1} - D_{B1}] + [R_{A1} - R_{B1}]$$

$$\approx 3 \text{ to 5 cm (radial) acc}$$

~ 3 to 5 cm (radial) accuracy from POD Difference (A-B) of outward delay

Link budget

Conclusions

Ajisai Time Transfer is getting more feasible now!

kHz laser: 10 to 20 shots per footprint passing

Event timer: Multiple stops

New algorithm: no need to get dual ($A \rightarrow B \& B \rightarrow A$) range

But more to do, if you are interested

Time source: GPS? Linked to the national standard? Synchronous ranging? Or, multiple range gate? More photons: Strong laser? Higher rep rate? Any other way? One-way system internal delay (Station A minus Station B) Obs & studies on Ajisai's spin motion

Then, "< 100 ps accuracy" will be within sight!

Experiment Plan

Ordinary laser ranging

