# New Application for kHz Laser Ranging: Time Transfer via AJISAI 

Toshimichi Otsubo, Hiroo Kunimori and Tadahiro Gotoh
National Institute of Information and Communications Technology

## Ajisai for time transier

## Proposal: Kunimori et al. (Annapolis Workshop, 1992)

Between common-view stations
Reflection from mirrors
Unlimited lifetime
Purely geometric
Retroreflect
Curved mirrors


## Experiment Plan

## Two-way time transfer: Kunimori et al. (1992)



## Formulation

## $\Delta T_{A} D$ Dfference of 2 twoway range observations.



$$
\stackrel{\rightharpoonup}{L_{A}}=t_{R}(A \rightarrow B)-t_{T}(A)-t_{R}\left(B \rightarrow A_{2}\right) \cdot \lambda_{T}^{A}(B)
$$

$$
=2 \Delta T_{B-A}+\left[\left(R_{B 2}-R_{B 1}\right)-\left(R_{A 2}-t_{A S} A_{A 2}+R_{\left(D_{A 1}\right.}+D_{A I}\right)+L_{A / f o r A}\right.
$$

$$
\bigcirc \overbrace{A 1}^{D_{A 1}}+D_{B 2}-\underset{R A 1}{D_{B 1}-D_{A 2} B_{B} D_{A H B}} D_{B 2} O
$$



$$
\begin{aligned}
& +D_{B 2}+\left(D_{A 1}-D_{A 1}\right)+L_{A} \\
& =\left[t_{0}-\Delta T_{(B-A)}+R_{B 2}+\left(R_{A 1}-R_{A I}{ }^{*}\right)\right. \\
& \left.+D_{B 2}+\left(D_{A 1}-D_{A 1}\right)+L_{A A}\right]_{\text {bor } B}
\end{aligned}
$$

## It has been difficult, but

## Timing

Signal-transfer geometry is satisfied just for 5 to 10 ms .
kHz laser won't miss any! (compare: 100 to 200 ms time interval of $5-10 \mathrm{~Hz}$ rep. lasers)
This happens 3 times per Ajisai's spin period (currently ~ 2 s ).

## System

Need to detect a pulse coming from a remote station
$\rightarrow$ Synchronise the timing of laser hitting the satellite.
Event timer helps a lot.
$\rightarrow$ Or, Set multiple range gates by exchanging firing info.
Link
1 to 10 photons for a $100 \mathrm{~mJ} /$ pulse laser.
Dual $(A \rightarrow B$ and $B \rightarrow A)$ two-way range obs required.
photons/pulse with kHz laser

Single + SLR will do.

## Experiment Plan

## One-way + SLR time transfer: this study (2006)



## New idea (2006): Formulation

A two-way range minus an SLR observation. (no need for dual two-way ranges)

$$
\begin{aligned}
& \rho_{A \rightarrow B}-\rho_{B \rightarrow B} \\
& =t_{R}(A \rightarrow B)-t_{T}(A)-t_{R}(B \rightarrow B)+t_{T}(B)
\end{aligned}
$$

$$
\vdots
$$

$$
=\Delta T_{B-A}+\left[D_{A 1}-D_{B 1}\right]+\frac{\left[R_{A 1}-R_{B 1}\right]}{\sim 3 \text { to } 5 \mathrm{~cm}} \text { (radial) accuracy from POD }
$$

Difference (A-B) of outward delay

## How to find the "signal"

Assume synchronous laser.


3 flashes per rotation period ( 2 s )


## Link budget

$$
\text { Assume R1 = R2. } \quad 100 \mathrm{~mJ} \text { laser }
$$



Wavelength 0.532 nm System efficiency $0.7 \times 0.1$ Atmosphere $0.7 \times 0.7$ Beam div (radius) 5 arcsec Ajisai mirror $A=0.38 \mathrm{~m}^{\wedge} 2$ $\mathrm{R}=9 \mathrm{~m}$

400 microJ laser


## Conclusions

Ajisai Time Transfer is getting more feasible now!
kHz laser: 10 to 20 shots per footprint passing
Event timer: Multiple stops
New algorithm: no need to get dual $(A \rightarrow B \& B \rightarrow A)$ range
But more to do, if you are interested
Time source: GPS? Linked to the national standard?
Synchronous ranging? Or, multiple range gate?
More photons: Strong laser? Higher rep rate? Any other way?
One-way system internal delay (Station A minus Station B)
Obs \& studies on Ajisai's spin motion
Then, "<100 ps accuracy" will be within sight!

## Experiment Plan

## Ordinary laser ranging



