

RUSSIAN LASER TRACKING NETWORK

V. Burmistrov, A. Fedotov, N. Parkhomenko, V. Pasinkov, V. Shargorodsky, V. Vasiliev

Institute for Precision Instruments Engineering Moscow, Russia

XV International Laser Ranging Workshop Canberra, 2006

RUSSIAN LASER TRACKING NETWORK

Russian SLR stations comprise three optical channels: ranging channel, angular measurement channel, and photometric channel, providing the following accuracy:

- Ranging: 5 10 mm (RMS of NP)
- Angular measurements (in reflected sunlight): 1 arcsec
- Photometry (in reflected sunlight): ≈ 0.2 star magnitude

Ranging data application

High precision of laser ranging allows to use SLR as an only source of calibration data for GLONASS ephemeris determination providing solution of following problems:

- Estimation of accuracy and calibration of radio-frequency means for GLONASS orbit measurements
- Monitoring of on-board clocks and application of the data for operational control of GLONASS time and ephemeris data by means of providing SLR stations with geodetic-class RF navigation receivers connected to hydrogen maser frequency standards
- Providing of the geodetic base for GLONASS reference frame
- Providing of declared values of the ephemeris precision as well as computation and forwarding of accuracy factor in the navigation frame of GLONASS – M spacecraft

Angular measurements data application

Angular measurements data obtained on SLR stations are used for implementation of single-point scheme of flight control for commercial geostationary spacecraft by means of periodical measurements of orbit inclination to provide retaining of the spacecraft standpoint within ± 0.1 deg. in longitude and ± 0.1 deg. in latitude

Photometric data application

Presence of a high-sensitivity TV channel provides registration of flight phases (rocket engines turn-on, booster separation, etc.) during launching of spacecraft on high elliptical and geostationary orbits

 The photometric channel supports the determination of spacecraft motion relatively to its center-of-mass and its attitude stability as well

Taking into account the unfavorable astro-climatic conditions on most of the country territory efforts are made to expand the Russian laser tracking network. Currently 5 SLR stations are in operation. In next 3 - 5 years the number of stations will be increased up to 15...20 as it is declared in the new Global Navigation System Federal program.

Russian laser tracking network:

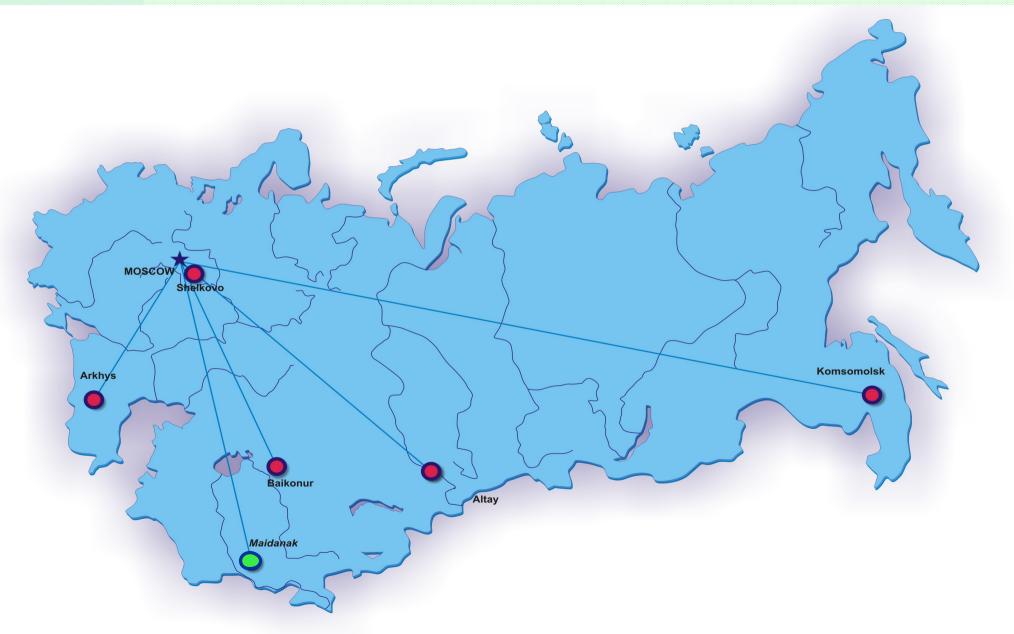
1. Schelkovo (Moscow suburb)

Russian laser tracking network:

3. Komsomolsk

4. Archyz (Northen Caucasus)

Russian laser tracking network:



6. Maidanak

5. Baikonour (Kazachstan)

Russian laser tracking network

