

Li zhulian, Zheng xiangming, Xiong yaoheng

Yunnan Observatory of Chinese Academy of Sciences, Kunming, China

Modern Telescopes Servo-Control Systems

Compensation Network

Fig: Feedback Control Loop with Compensation

Compensation Network

compensation

Fig: Feedback Control Loop with Compensation

Compensation Network

- PD(Proportion Differential) Compensation Network
 >>Characters
- PI(Proportion Integral) Compensation Network
 - >> Characters
- PID(Proportion Integral Differential) Compensation Network
 - >> Characters

The Bode Graph of PD Compensation

The Bode Graph of PD Compensation

PD Network Characters

- Make system response more quickly
 >>to enable telescope to track some quick bodies, such as, satellites near the earth
- Improve system dynamic capability
 >able to get expected response
- Stability accuracy hardly changes
- Increase high frequency noise effect
 - usable when require quick response

The Bode Graph of PI Compensation

Bode Graph of PI Compensation

PI Network Characters

- Improve stability accuracy
 >>able to decrease system stability error!
- Decrease high frequency noise effect
- Long instantaneous response time
 >>unfit for the telescope expected to track quick bodies
- usable for expected high stability precision

PID Network

• "PID = PI + PD"

PID has both PI and PD's advantages

Need more devices and more design cost

1.2m alt-az telescope servocontrol system

```
PI Network
                             PD Network
Maximum speed:
                            Maximum speed:
altitude...1° /s;
                            altitude...3° /s;
azimuth... 1° /s
                            azimuth...5° /s
Accuracy:
                             Accuracy:
altitude ... 0.3° /s
                             altitude...3° /s
azimuth ...0.3° /s
                           azimuth ...1.5° /s
```


1.2m alt-az telescope servocontrol system

- Able to fulfil \geq 400km slr at present
- Pointing accuracy expected to improve
 - >>we use software method to solve this problem, such as ,"small period model"

Conclusion

• PD compensation method + software

adjustment aseful for the telescopes

ranging from low to high orbit bodies

Thank you!

