

Improvement of Current Refraction Modeling in Satellite Laser Ranging (SLR) by Ray Tracing through Meteorological Data

Glynn Hulley

Erricos C. Pavlis

Joint Center for Earth Systems Technology (JCET) - NASA/GSFC

15th International Laser Ranging Workshop Extending the Range 15-20 October 2006, Canberra, Australia

- Introduction
- Motivation
- AIRS ray tracing
- Global horizontal gradient results
- Seasonal, diurnal effects at Yarragadee
- AIRS uncertainties
- Effects of gradients on real SLR data
- Conclusions

Introduction

- Atmospheric refraction introduces significant errors in Satellite Laser Ranging (SLR) at present
- Current zenith delay model (M-P) has submillimeter accuracy
- Mapping function has sub-centimeter accuracy down to 10° elevation
- All models assume spherically symmetric atmosphere
- Need to account for horizontal gradients in refractivity to improve models

Motivation

- Horizontal gradients largest source of error in SLR
- Need to be accounted for to improve accuracy of refraction corrections
- Introduce centimeter-level errors at low elevation angles
- Predominantly a function of temperature gradients
- Vary by season, latitude dependence, topography and proximity to large bodies of water
- We look at AIRS and NCEP results during 2004 for a set of core SLR stations

- Atmospheric Infrared Sounder (AIRS)
 - 100 levels from surface to 0.1 mb
 - Granules are 1600 (EW) x 2300 (NS) km
 - 50 km resolution
 - Temperature, water vapor other geophysical parameters
- Accuracy: 1.5 K/km RMS near surface, 1 K/km in troposphere, ~2 K in stratosphere
- Provides rapid and temporal global coverage
- 3d Refractivity profiles around SLR tracking stations
- ECMWF and NCEP profiles used as 'validation'

Horizontal refractivity gradients are predominantly a function of temperature gradients

AIRS Gradient delays at 10 degrees elevation for Jan. 1 to Dec. 31 2004

Station	NS Grad	ient	EW Gradient		
	Mean (mm)	Std	Mean (mm) Std		
Greenbelt, MD	-2.5	11.9	-1.5	9.8	
Monument Peak, CA	-1.5	11.0	1.8	12.3	
McDonald, TX	-1.4	11.7	-2.9	9.8	
Herstmonceux, England	-3.5	12.3	0.1	9.5	
Zimmerwald, Switzerland	-2.2	10.8	6.9	10.3	
Graz, Austria	-3.3	10.9	-0.4	8.7	
Matera, Italy	-2.5	11.5	1.1	10.0	
Hartebeesthoek, South Africa	1.0	8.1	1.8	8.3	
Mt Stromlo, Australia	2.0	11.0	4.5	10.3	
Yarragadee, Australia	1.3	9.5	1.7	9.7	

NCEP Gradient delays at 10 degrees elevation for Jan. 1 to Dec. 31 2004

Station	NS Grad	ient	EW Gradient		
	Mean (mm)	Std	Mean (mm)) Std	
Greenbelt, MD	-0.9	14.8	-4.6	10.7	
Monument Peak, CA	-1.5	14.7	-1.7	12.7	
McDonald, TX	-1.7	15.2	-2.1	12.4	
Herstmonceux, England	-2.7	14.6	2.0	14.0	
Zimmerwald, Switzerland	-5.0	14.9	1.8	13.7	
Graz, Austria	-7.3	14.6	0.1	13.6	
Matera, Italy	-3.6	14.9	0.9	12.0	
Hartebeesthoek, South Africa	3.6	11.7	1.9	7.3	
Mt Stromlo, Australia	2.7	13.3	-2.9	9.5	
Yarragadee, Australia	4.5	10.5	-1.8	5.9	

AIRS Gradient delays at 10 degrees elevation for Jan. 1-Dec. 31 2004

Station	Season	Time of day	NS Gradient RMS (mm)	EW Gradient RMS (mm)
Yarragadee	Summer	day	10.5	15.6
		night	6.5	9.9
	Winter	day	11.6	10.3
		night	9.1	8.4
Herstmonceux	Summer	day	14.1	10.1
		night	12.8	9.4
	Winter	day	13.8	9.7
		night	11.1	9.1

Effects of ray tracing on real SLR data

- AIRS/ECMWF/NCEP data temporally interpolated to coincide with station observation times.
- Surface temperature and pressures measured at station used in profiles.
- Residuals = obs calcs (M-P model)
- Total delay = delay (2D) + gradient correction
- Full 3D ray tracing includes gradient effects
- Unification of data sources, using global set of AIRS/ECMWF/NCEP atmospheric grids

Station	Month	Method	Obs	$R - R_g$		$R - R_{2d}$		R – R _{tot}	
				ΔRM\$	S Δvar	ΔRMS	Δvar	ARM	S Δvar
				mm	%	mm	%	mm	%
Yarragadee	Feb '04	AIRS	621	0.6	13.7	0.9	27.8	0.6	25.4
		ECMWF	621	0.8	13.9	1.5	30.0	1.1	23.9
		NCEP	621	0.8	17.7	1.0	38.0	0.8	36.6
	Aug'04	AIRS	568	0.2	6.5	0.4	15.0	0.3	10.0
		ECMWF	568	0.5	14.9	0.8	26.8	0.6	21.9
		NCEP	568	0.8	23.6	0.7	21.0	0.6	17.8

R = O - C $R_g = O - (C + \Delta \operatorname{trop}_g)$ $R_{2d} = O - (C - \Delta \operatorname{trop}_{mp} + \Delta \operatorname{trop}_{2d})$ $R_{tot} = O - (C - \Delta \operatorname{trop}_{mp} + \Delta \operatorname{trop}_{2d} + \Delta \operatorname{trop}_g)$ $\Delta var = variance percent difference (%)$

- R Residuals
- O Observed ranges
- C Calculated ranges
- $\Delta trop_{mp}$ model correction
- $\Delta trop_{2d}$ ray tracing correction
- $\Delta trop_g$ gradient correction

Station	Month	Method	Obs	$R - R_g$		$R - R_{2d}$		$R - R_{tot}$	
				$\Delta RMS \Delta var$		$\Delta RMS \Delta var$		ΔRMS Δvar	
				mm	%	mm	%	mm	%
Zimmerwald	Feb '04	AIRS	484	0.6	12.0	1.7	16.6	1.5	12.4
		ECMWF	484	0.9	4.3	2.2	24.0	1.9	20.5
		NCEP	484	0.9	-2.7	0.7	27.6	1.1	8.5
	Aug'04	AIRS	769	0.6	20.8	1.0	20.1	1.1	23.4
		ECMWF	769	1.0	18.9	2.5	30.0	2.0	30.1
		NCEP	769	0.4	-9.0	0.4	3.6	0.3	-7.8

R = O - C $R_g = O - (C + \Delta \operatorname{trop}_g)$ $R_{2d} = O - (C - \Delta \operatorname{trop}_{mp} + \Delta \operatorname{trop}_{2d})$ $R_{tot} = O - (C - \Delta \operatorname{trop}_{mp} + \Delta \operatorname{trop}_{2d} + \Delta \operatorname{trop}_g)$ $\Delta var = variance percent difference (%)$

- R Residuals
- O Observed ranges
- C Calculated ranges
- $\Delta trop_{mp}$ model correction
- $\Delta trop_{2d}$ ray tracing correction
- $\Delta trop_g$ gradient correction

Conclusions

- Horizontal gradients need to be accounted for to improve SLR measurements for mm-geodesy
- Only significant at low elevation angles and are strongly correlated to temperature gradients
- Ray tracing (2D + gradients) reduce residual statistics by up to 2 mm RMS and 30% in variance
- Unification of data sources will help, using AIRS/ECMWF/NCEP atmospheric grids

- Atmospheric Infrared Sounder (AIRS)
 - 100 levels from surface to 0.1 mb
 - Granules are 1600 (EW) x 2300 (NS) km
 - 40.5 km resolution within grid
 - Data is obtained twice-daily
- ECMWF
 - 60 levels from surface to 0.1 mb
 - 0.5° resolution
 - Analysis files at 00, 06, 12 and 18 hrs UTC
- NCEP
 - 17 levels from surface to 10 mb
 - -2.5° resolution
 - Analysis files at 00, 06, 12 and 18 hrs UTC

$$\begin{aligned} d_{atm} &= 10^{-6} \int_{atm} N \cdot ds + \left[\int_{ray} ds - \int_{vac} ds \right] \\ N_h &= 0.82 f_h(\lambda) Z_d R_d \frac{M_d}{ZR} \left[\frac{P}{T} - (1 - \varepsilon) \frac{e}{T} \right] \\ N_{nh} &= -0.82 \varepsilon f_h(\lambda) \left(\frac{Z_d}{Z} \right) \left(\frac{e}{T} \right) + 0.72 f_{nh}(\lambda) \left(\frac{Z_w}{Z} \right) \left(\frac{e}{T} \right) \end{aligned}$$

$$P = P_o \left(\frac{T}{T_o}\right)^{\frac{g}{R_d\alpha}}$$
$$\rho = \frac{h}{\tan E} \left(1 - \frac{1}{2} \frac{\cos^2 E}{\tan^2 E} \frac{h}{r_s}\right)$$