Graz kHz SLR Station

Measuring Atmospheric Seeing with kHz SLR

Georg Kirchner, Daniel Kucharski, Franz Koidl, Jörg Weingrill

Beam Pointing: Not always stable ...

- Laser Beam, night time
- Backscatter, seen by ISIT
- 25 Frames per second
- Pointing is NOT stable
- Pointing Jitter: up to 50 µrad
- Frequency of this wobbling:
 Few Hz up to few 10 Hz

Possible Reason: Laser Beam Pointing ?

• We installed a Laser Beam Monitor at the laser box beam exit:

- A mirror reflects a small portion (<< 1%) of the laser on a CCD chip;</p>
- CCD Image: Monitored by a PC, with up to 30 fps;
- Center Coordinates of Beam (X / Y) calculated, and stored.

Possible Reason: Laser Beam Pointing ?

Only few µrad (<<1") wobble (mainly measurement accuracy);
ConclusionE Mabble isoNO To caused xpy nder;
Biggser/Bream Rointing Hostability up (not shown here)

Beam Monitor: Laser Beam Pointing Stability X/Y-Coordinates of Beam Center at CCD (5 fps)

Other possible reason: Atmosphere ...

- Beam Wobble caused by atmospheric micro-turbulences
 Atmospheric "Seeing":
- Expected Amplitudes: Some Arcseconds
 - Laser Beam Wobble: Up to 50 µrad (= 10")
 - Expected Frequencies: From few Hz up to few 10 Hz
 - Can be more than 100 Hz, but at decreasing amplitudes ...
 - Laser Beam Wobble: Up to 10 or 15 Hz visible at ISIT images

Seeing Effects for SLR ???

Graz Beam Divergence (< 10["]) and Seeing (≈ 2["] − 7["]):

- Both with Similar Magnitudes ...
- Seeing for SLR can be WORSE than Astronomical Seeing:
 => Fast moving telescope, faster changing atmospheric conditions
- Degrades laser pointing accuracy
- May reduce return rates;
- No problem for LEOs, but may have effects for GPS etc.

What worsens "Seeing"?

Seeing Values are influenced by:

Actual atmosphere: Wind; layers, gradients etc.

Elevation of Satellite: Seeing is worse at lower elevation

Temperature differences: Seeing is worse in winter time:

- Graz Observatory rooms are heated; but isolation is almost ZERO
- This causes lot of turbulences around station in WINTER time ...

Motion of telescope: Seeing is worse at higher speeds !!!

Measuring Seeing: Standard Method

Hartmann – Shack: 2 Holes at the entrance pupil;

- Observing Polar Star: Gives 2 spots on the CCD sensor;
- Variation of spot distances gives Seeing Value

Seeing = 3.57 arcsec

Seeing Values with Hartmann-Shack

Our "Best" Seeing ever measured: Below 3" during 3 hours

Deriving Seeing Values from kHz

Seeing 2.98 arcsec

- Laser Beam Backscatter is monitored by ISIT; frames into PC
- Real Time Image Processing: Determine Peak of Laser Beam;
- Coordinates of Peak determine Seeing Area;
- FWHM of this area => Astr. Seeing (arc secs);
- Compare with Hartmann Shack Results

Seeing Values derived from kHz Laser

Seeing / Fixed Pointing

Seeing Values Derived from kHz Laser

Ajisai / Day 037/2006: Seeing changes with elevation

Seeing Values Derived from kHz Laser

Lageos1 322 03: 43° EL

Seeing Values Derived from kHz Laser

Conclusions:

- It is possible to derive Seeing Values from a kHz Laser Beam;
- Seeing Influence is BIG enough to spoil Laser Beam Pointing;
- This might reduce Return Rate from High Orbiting Sats;
- Biggest Influence in Graz: Heating of Observatory
 - We have to live with it or freeze to death \odot
- Plans to reduce effect with a Fast Steering Mirror, controlled by Seeing Offsets derived from kHz Beam (10" max, 40 Hz max);

