

Second-Generation, Scanning, 3D Imaging Lidars Based on Photon-Counting

John Degnan, David Wells, Roman Machan, Ed Leventhal, David Lawrence, Yunhui Zheng, Steven Mitchell, Christopher Field, William Hasselbrack Sigma Space Corporation, 4801 Forbes Blvd., Lanham, MD 20706 USA 15th International Workshop on Laser Ranging October 16-20, 2006

Why Photon Counting?

- Most efficient 3D lidar imager possible; each range measurement requires only one detected photon as opposed to hundreds or thousands in conventional laser pulse time of flight (TOF) altimeters
- High efficiency translates to either
 - significantly less mass, volume, and prime power ; or
 - orders of magnitude more imaging capability
- Single photon sensitivity combined with multistop timing capability enables lidar to penetrate porous obscurations such as vegetation, ground fog, thin clouds, water columns, camouflage, etc.
- Makes contiguous, high resolution topographic mapping and surveillance on a single overflight possible with modest laser powers and telescope apertures – even from orbital altitudes.

Sigma Imaging Lidar Projects

- 1st Generation (feasibility demonstration)
 - NASA "Microaltimeter" (NASA Goddard Space Flight Center) up to 6.7 km altitude (1999-2002)
- 2nd Generation (15-20 cm horizontal resolution and contiguous coverage)
 - CATS Underwater 3D Imaging Lidar (Univ. of Florida at Gainesville/ Sigma/Fibertek Corp. for US Navy) – 0.6 km design altitude (Cessna), 20 cm horizontal resolution, 5 m depth penetration
 - USAF 3D Imaging and Polarimetric Lidar (Phase II SBIR) 1 km design altitude (Aerostar Mini-UAV), 15 cm horizontal resolution, tree canopy penetration
- Future Generation (few meter horizontal resolution and contiguous global coverage from space)
 - 3D Topographic, Polarimetric and Hyperspectral Mapping of three Jovian Moons from Orbit (NASA HQ 1 yr Advanced Study)
 - Goal: Globally contiguous map of Europa in 1 month, 10 m horizontal, 1 m vertical resolution, Ganymede & Callisto in 2 months
 - 100 km orbital altitude –2W laser power, 70 cm aperture, internal scanner

IIP Multikilohertz Microlaser Altimeter (''Microaltimeter')

Town of Chincoteaque (Jan. 4, 2001, 1:50 pm EST)

0.6 seconds of raw data over full 4 μ sec range window

Laser Power= 7.6 mW (2 µJ@ 3.8 kHz), Telescope Aperture = 14 cm, Est. Mean Signal = 0.88 pe Each point is a single photon time of flight measurement to surface (signal) or a single solar photon scattered by the surface or atmosphere (noise)

•

Diode-Pumped Passively Qswitched Nd:YAG Microchip Laser including TEC cooler and

DoublingCrystal

IIP Airborne Multi-kHz Microlaser Altimeter Sample Profiling Data From 1st Engineering Flight, Jan 4, 2001

- **Engineering Flight Parameters**
 - NASA P-3 Aircraft, Wallops Flight Center
 - Locale: Chincoteague, VA & Chesapeake Bay
 - Flight Altitudes: 3.5 to 6.7 km (11,000 to 22,000 ft)
 - Early afternoon (maximum solar background)
 - Laser Energy: $< 2 \mu J @ 532 nm$
 - Laser Repetition Rate: 3.8 kHz
 - Laser Power: ~7 mW
 - Effective Telescope Diameter: 14 cm
 - Mean Signal Strength per Laser Fire: ~ 0.88 pe

Buildings and Trees

Shallow Water Bathymetry

J. Degnan, J. McGarry, T. Zagwodzki, P. Dabney, J. Geiger, R. Chabot, C. Steggerda, J. Marzouk, and A. Chu, "Design and performance of an airborne multikilohertz, photon-counting microlaser altimeter", Int. Archives of Photogrammetry and Remote Sensing, Vol. XXXIV-3/W4, pp. 9-16, Annapolis, MD, 22-14 Oct. 2001.

J. Degnan, J. McGarry, T. Zagwodzki, P. Dabney, J. Geiger, R. Chabot, C. Steggerda, J. Marzouk, and A. Chu, "Design and performance of an airborne multikilohertz, photon-counting microlaser altimeter", Int. Archives of Photogrammetry and Remote Sensing, Vol. XXXIV-3/W4, pp. 9-16, Annapolis, MD, 22-14 Oct. 2001.

(Route 50 Bridge into Ocean City, MD)

Bridge and Moving Vehicle (High Resolution Vertical View)

Shallow Water Bathymetry Example

Airborne Microaltimeter: Assateague Island Beach (VA) 1.7 km along-track profile (~ 20 secs of data),Vertical scale: <u>+</u> 5 m 20 Hz scanner on, raw 3D profile projected into 2D plane

Raw Altimeter Data 20 Hz Conical Scanner On Altitude = 17,500 ft (5.3 km) **CCD Camera Image** (no contrast enhancement)

Extreme Haze and Clouds (Zoom View)

Raw Altimeter Data 20 Hz conical scanner on Altitude = 17,500 ft (5.3 km)

Enhanced Contrast CCD Image

Start of Forest

Courtesy: Jan McGarry, NASA Goddard Space Flight Center

Courtesy: Jan McGarry, NASA Goddard Space Flight Center

Second Generation Upgrades

- More powerful, higher repetition rate microchip laser transmitter
- More efficient 10x10 anode microchannel plate photomultiplier and high resolution (<u>+</u> 92 psec) 100-channel, multistop timer
 - Greater QE (40% vs 10%) and Counting Efficiency (28% vs 7%) results in four-fold signal increase in signal counts/sensitivity
 - Faster tube response and lower transit time jitter in microchannels improves range resolution
 - Larger number of anode segments and timing channels increases spatial resolution while reducing scan speed and laser repetition rate requirements
- Holographic element in transmitter path produces 10 x10 array of spots at the target, each of which is imaged onto a single detector pixel
- Replace free-running single wedge conical scanner with more flexible counter-rotating dual optical wedge scanner synchronized to the laser pulse train
 - Provides contiguous wide area scans on a single overflight
 - Provides a variety of 1-D and 2-D scans for different platform velocities
 - Synchronization to pulse train eliminates need to record wedge angular positions on every shot and reduces sensitivity to variations in laser repetition rate.
- Add polarimetry channel to utilize residual 1064 nm power
- Much smaller telescope/opto-mechanical package fits into mini-UAV

CATS Underwater 3D Imaging Lidar (Univ. of FL at Gainesville, Sigma, Fibertek)

Dual Wedge Scanner

3 inch Shared Afocal Telescope

Rooftop Holographic Element Demo

Holographically Transformed Transmitter Beam Imaged onto Multi-anode or Array Detector

Beamlet Images Centered on Anode Elements

 Hologram converts Gaussian transmit beam into NxN quasiuniform intensity spots in the far field with ~80% efficiency •Transfers energy from Gaussian center peak to detector perimeter for better uniformity of detection (\pm 12%) •Reduces optical crosstalk between pixels •Each pixel sees reduced beam spreading by target (~1/N) •Individual pulses produce 10x10 3D images which are then mosaiced together by the scanner and platform motion

Dual Wedge Optical Scanner Synched to 8 kHz Pulse Train

- •Laser Fire Rate: 8 kHz
- •Scan Rate: 20 Hz
- •Laser Fires per Scan: 400
- •3D pixels per scan: 40,000 (with 10x10 holographic element)
- •Angular Scan Repeatability between Cycles: 1 part in 10⁵ or <u>+</u>0.07 pixel (~1cm @ 1 km altitude)

Mini-UAV-based 3D Imaging and Polarimetric Lidar: USAF Phase II SBIR

Challenge: Develop a high resolution lidar sensor for use in a mini-UAV

Mission Parameters

•Operating altitude: ~1 km

•Swath: 150 m

•Spatial Resolution:

Imager: Horiz: 15 cm; Vert:<5cm
Polarimeter: Horizontal: 1.5 m
Mean Ground Velocity: 161 km/hr
Areal Coverage: 24 sq. km/hr
Payload Parameters

•Physical Size & Mass (incl. NAV):

Optical Bench: 13"Lx12"Wx17"H, 43 lb
NAV/Electronics Box: 12"Lx12"Wx12"H, 30 lb
Prime Power: 271 W (est.)
2.2 million 3D pixels per sec (100 pixels @ 22 kHz)

USAF OPTICAL BENCH (**3D Imager & Polarimeter**)

Transmit side

Dove prism

Polarimeter optics

Receive Side

Sigma 100 Channel Imaging Detector and Range Receiver

- Detector is Hamamatsu 10x10 Segmented Anode Photomultiplier (QE = 32%, risetime < 200 psec)
- Output signals from 100 detector anodes are amplified and input to two 50-channel Time-of-Flight Field Programmable Gate Arrays (TOF FPGA)
- Timing resolution of ± 92 psec is determined by average FPGA cell delay (corresponds to ± 1.5 cm range resolution)
- Number of stops allowed per channel is limited only by memory buffering constraints
- Recovery time per pixel is less than 2 nsec (~one foot minimum distance between detected objects)
- TOF FPGA continuously calculates calibration data such that temperature and voltage variation effects can be subtracted during data analysis and post-processing stages
- 120 GB of Ultra-DMA data storage is currently provided to support missions up to several hours.

2 nsec Receiver Recovery Time

Yellow Trace = Amplifier Input (150mV), Green Trace = Comparator Output

•Each anode (pixel) can see multiple objects separated by as little as one foot (30 cm) in a single pulse return

•Important for seeing objects

- •against a high solar background or
- •through semi-porous volumetric scatterers such as ground fog, tree canopies, turbid water, battlefield dust, camouflage, etc

Summary

- Basic photon-counting imaging lidar concept was demonstrated successfully under NASA Instrument Incubator Program (IIP) on the NASA P-3 Aircraft
- Second generation instruments provide contiguous, high resolution, wide swath 3D topographic and polarimetric maps on a single overflight using:
 - Low energy, subnanosecond pulse microchip lasers operating at rates up to 22 kHz (2.2 million pixels per second) and holographic beam shapers
 - High QE, segmented anode Microchannel Plate Photomultipliers
 - Multichannel, multistop range receivers with better than <u>+</u> 92 psec timing (<u>+</u> 1.5 cm range) resolution and <2.3 nsec deadtime (<35 cm range recovery per pixel)
 - Laser-synchronized dual wedge optical scanners provide flexible scans for a variety of host platforms and eliminate the need to record wedge positions on every fire.
- Single photon ranging makes lidar very sensitive and highly efficient
 - One photon per range measurement implies maximum "bang" per photon
 - Sees single photon per pixel returns from distant targets day or night.
 - Post-Detection Poisson Filters easily extract the signal from the solar background during daylight operations.
- Single photon sensitivity combined with multistop detection and timing allows volumetric imaging on a single pulse through semi-porous obscurations such as extreme atmospheric haze, optically thin clouds, dust, vegetation, turbid water columns or camouflage
- High resolution imaging from space can be accomplished with modest telescopes (<1 m) and output powers (few watts).