« Ftlrs Ajaccio campaigns : opérations and positionning analysis over 2002 and 2005 campaigns

F. Pierron, Pierre Exertier, P. Berio, M. Pierron, D. Coulot, P. Bonnefond-OCA, Grasse, FRANCE B. Gourine - CNTS, Arzew, ALGERIA

Introduction and Operational issues for Corsica campaigns

Jason1 calibration/validation data

Scientific investigation and results for positionning

Conclusion and prospects

Oca-Grass

Ftlrs

Introduction

The Ajaccio Site (Corsica) is the main calibration site of the satellite altimeters in the Mediterranean area.

Objectives :

Absolute sea level monitoring, altimeter calibration and orbit validation (CAL/VAL) of the Topex/Poseidon, Jason-1 and Envisat satellites from the Ajaccio site (Corsica - FRANCE).

Estimation of the satellite altimeters biases and drifts

Need for carrying out an <u>accurate SLR positioning</u> from the geodetic satellites observations

Notice:

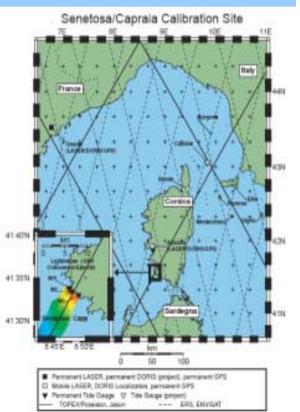
Altimeter calibration = precisely compare

- altimeter data
- satellite altitude above the sea level

LASER campaigns in Corsica

Geographical situation :

- Naval base at Aspretto (Ajaccio)
- In situ instruments at Senetosa Cape : Tide gau
- GPS buoys, meteo station,...

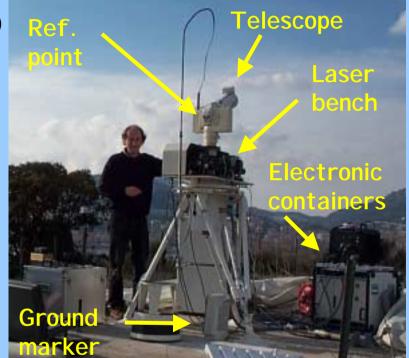

Laser campaigns :

- January September 2002 (10 months)
- May October 2005 (5 months)
- 4 satellites used : combination multi-satellite

Instrument :

French Transportable Laser Ranging System (F1

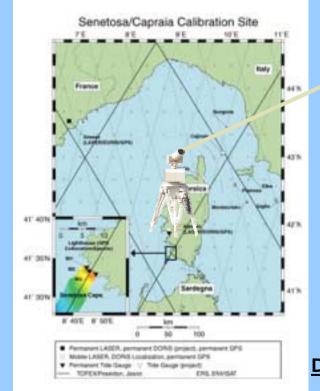
FTLRS : French Transportable Laser Ranging System

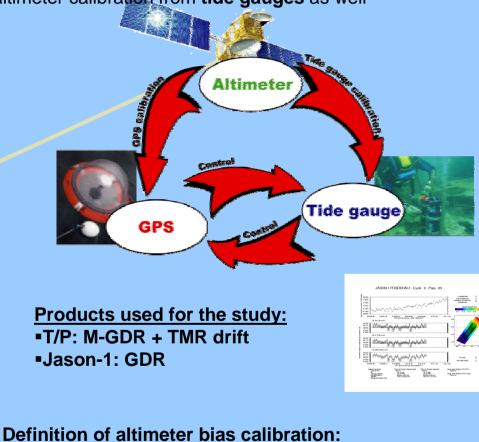

- Very small SLR system in operation for 5 years
 - 350 Kg

OCA-Grasse

- \emptyset tel = 13 cm (emission/reception)
- Time = GPS steered rubidium
- LEO satellites to Lageos-1&-2

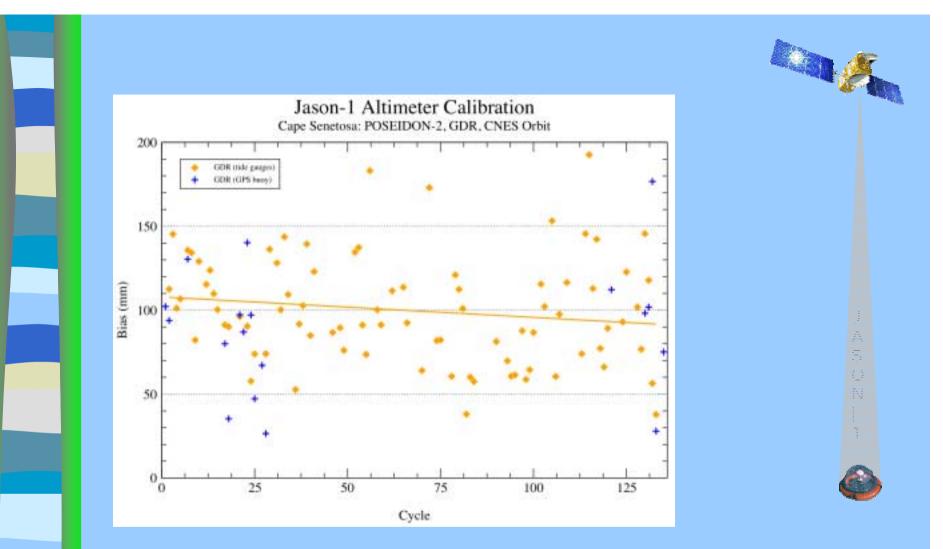
Applications

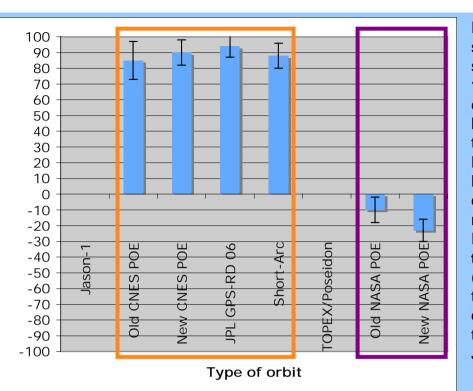



- Satellite Altimeter Calibration
- Reference Frame
- Charge Effects
- Co-localisation Mono or Multi-techniques

Configuration for absolute calibration

- A geodetic site at Ajaccio: FTLRS has been settled from January to September 2002 and from May to October 2005.
- An in-situ site at Senetosa cape under the track N°85

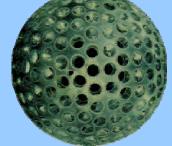

The Senetosa site allows to perform altimeter calibration from **tide gauges** as well as from a **GPS buoy**.


sea height bias = altimeter sea height - in situ sea height

Sea height bias < 0 meaning the altimetric sea height being too low (or the altimeter measuring too long) Sea height bias > 0 meaning the altimetric sea height being too high (or the altimeter measuring too short)

At Senetosa POSEIDON-2 altimeter bias is $+100 \pm 4$ mm, based on the whole set of GDR-A products (135 cycles). The large negative trend is due to JMR in GDR-A and will be discussed in the "GDR-A/GDR-B" and "Wet Troposphere" sections.

This drift effect is due to steps in the Jason-1 Microwave Radiometer calibration coefficients and clearly affects the Jason-1 altimeter bias time series. The future release of Jason-1 altimetric data includes new calibration coefficients and then this drift is removed (see JMR GDR-B).


For Jason1, the new CNES POE really shows an improvement in term of standard deviation with a decrease of 18 mm in term of root square difference compared to the old one. The same level of improvement is obtained with the Short-Arc orbits. The GPS **Reduced-Dynamic orbits have the** lower standard deviation with a decrease of 10 mm compared to the new CNES POE or the Short-arc orbits. For **T/P**, the **level of improvement on** the standard deviation is a little less (13 mm) than for Jason-1. Concerning the value of the altimeter bias itself, it decreases by -13mm so 8 mm more than between the old and new POE for Jason-1.

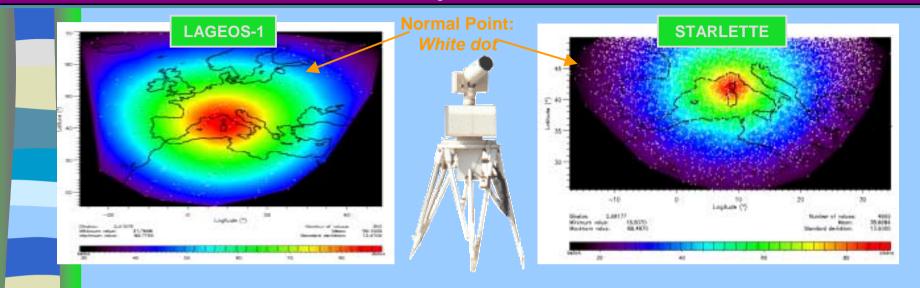
Orbit	Bias	Standard Deviation	Standard Error	Number
Jason-1		Based on GDR-	B products	
Old CNES POE	85	26	12	5
New CNES POE	90	19	8	5
JPL GPS-RD 06	94	16	7	5
Short-Arc	88	19	5	
TOPEX/Poseidon		Based on RGDR	-1 products	
Old NASA POE	-10	29	8	14
New NASA POE	-23	26	7	14

Scientific Investigation for Positionning

Positioning with 4 geodetic satellites :

LAGEOS-1 LAGEOS-2

STARLETTE STELLA


🔶 Goals :

- Maintain the geodetic accuracy of the FTLRS position in Ajaccio site (Corsica) between the two campaigns
- Provide high accuracy local orbits for the Jason-1 altimeter calibration

Main steps of the work methodology :

- a Orbit computation
- b Positioning of the FTLRS Station

Maps of the range data distribution during the 2005 campaign (05 months) above Ajaccio site

LAGEOS :

Few measurements on LAGEOS satellites, particularly at low elevation (40°), and irregular distribution of these data over the Ajaccio site

Are difficult to reach by the FTLRS laser (high altitude)

Low number of normal points collected : not enough to perform 3D geocentric positioning
(σ <±1cm)

Starlette / Stella :

Ten times more range data on Starlette/Stella relative to LAGEOS, and homogeneous distribution of the range data over the Ajaccio site.

Problematic

Problematic ?

Quality of the FTLRS positioning depends on the accuracy of the orbits.

→ Starlette / Stella : More sensitive to remaining uncertainties in the dynamical models (gravit. & non gravit. Effects).

Solution :

✓ Since few years: Improvement of the field gravity model (GRACE mission)

✓ Adoption of an accurate field gravity model for the LEO computation

✓ Multi-satellite Combination

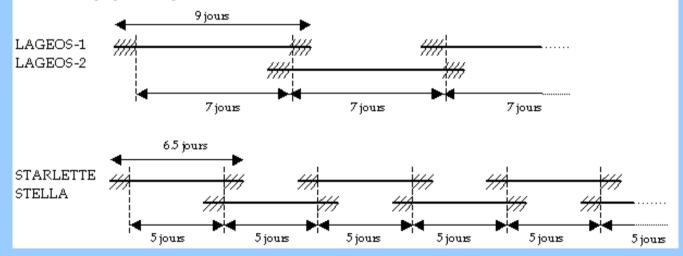
a. Orbit Computation

GINS software (developed by CNES)

> Dynamical Models used :

Model	Designation
Gravity field	Grim5-c1 or Eigen-Grace03s
Atmospheric pressure	ECMWF
Solar flow	Acsol2
Atmospheric Density	Dtm-94bis
Ocean tides	Fes-2002
Planets	De403bdlf.ad.ibm
Earth Orientation Parameters	Eop-c04

Terrestrial reference frame : ITRF2000



a. Orbit Computation

Computation by successive arcs with overlapping periods

Nom du satellite	Longueur de l'arc (jours)	Longueur de l'arc début + fin l'arc r de l'arc d'arc conservée d		Nombre de révolutions du satellite par arc	Nombre d'arcs pour la campagne 2005	Pas d'intégration (secondes)	
LAGEOS-1	9	1+1	7	45	22	90	
LAGEOS-2	9	1+1	7	45	22	90	
STARLETTE	6,5	0,75 + 0,75	5	50	32	45	
STELLA	6,5	0,75 + 0,75	5	50	32	45	

Overlap principle :

Overlap periods allow to control the orbits quality of successive arcs

- > To limit the "*butterfly effect*" on the arc computation.
- > To improve the arc computation

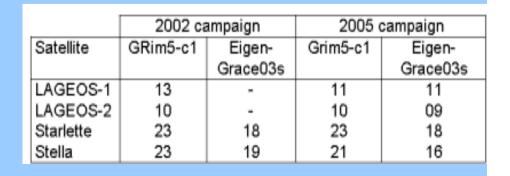
a. Orbit Computation

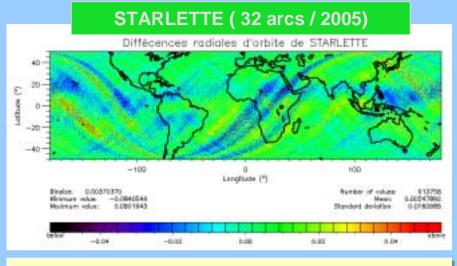
• Effect of the gravity field model on the quality of the orbits :

- Grim5-c1 (Gruber et al., 2000)
- Eigen-Grace03s (Reigber et al., 2005)

Radial orbit differences :

RMS_{Starlette} = +/- 15 mm


RMS_{Lageos} = +/- 5 mm


The Mediterranean area seems to be less affected by a permanent effect

• RMS (mm) of satellites orbits :

LAGEOS orbits are more precise & less affected by the change of the gravity field model

Eigen-Grace03s: improvement of the Starlette / Stella orbits precision (+/- 5mm)

Mean Radial orbit differences (m) geographically correlated of Starlette orbits

b. Positioning of FTLRS Station

□ MATLO software (developed by OCA), (Coulot, 2005):

- Dedicated to laser positioning (coordinate updates + range bias/satellite ?)
- Multi-Satellite Combination
- Global solution & Time series solution :

Initial coordinates :

4696993.369 724001.714 7239672.762 ITRF-97

Y(m)

- Position based 4696993.311 724001.825 7239672.837 ITRF-02 ates and range biases

Z (m)

ITRF-yy

are estimated with the whole data

X (m)

FTLRS tracking data (02 campaigns 2002 & 2005) - Position estimated every 7 days (7d.Sol) while bias/sat (supposed const.) remain estimated with the whole data - Temporal decorrelation method

Satellite	2002 Campaign	2005 Campaign
LAGEOS-1	301	377
LAGEOS-2	323	235
Starlette	3413	5294
Stella	1731	2069
TOTAL	5768	7975

Objective : Reduce the correlation between the range biases and the vertical component (dh)

		Resu	lts & A	nalys	sis		
Adjusted FTLRS	Range bias	B _{LAG-1} (mm)	B _{LAG-2} (mm)	B _{STAR} (mm)		B_{STEL} (mm)	Gravity field models :
parameters	Glob. Sol. (1)	+12.0	+12.2	-3.9		-6.4	(1): Grim5-c1
(2005 Campaign)	Glob. Sol. (2)	+4.8	+4.6	-4.9		-4.9	(2): Eigen-Grace03s
(2003 Campaign)	7d. Sol. (1)	+11.7	+13.8	-4.6		-5.4	
	7d. Sol. (2)	+4.9	+3.3	-5.6		-4.3	
	Coordinate updates	d φ (mm)	ά λ (mm)	dh (mm	.	ρ _{dh-Bias} (%)	
	Glob. Sol. (1)	+4.3 \pm 0.6	-10.1 ± 0.6	+11.7 :	± 1.8	94.4	
	Glob. Sol. (2)	+4.3 ± 0.5	$\textbf{-3.6}\pm0.4$	+3.0 ±	1.4	94.4	
	7d. Sol. (1)	+4.4 ± 0.6	-8.6 ± 0.5	+13.8 -	± 0.6	55.4	
	7d. Sol. (2)	+4.1 ± 0.4	-2.9 ± 0.4	+4.0 ±	+4.0 ± 0.4		L L

Glob.Sol : Correlation remains too high between biases and dh (94%) - Some part of the bias may move to dh and vice versa

■ 7d.Sol : Correlation decreases significantly (55%) → This solution is held

• Statistically, the estimates of coordinates updates with Eigen-Grace03s model are better

Results & Analysis

FTLRS parameters			Coordina updates	r	e d ø (mm)		dh (mm		ρ _{dħ-Bias} (%)	With:	Series Sol.
		2002	-0.8 ±	-0.8 ± 0.7		7 +0.2 ±	0.8 !	55.8		-Grace03s	
over 200) Camp			2005	+4 .1 ±	0.4	-2.9 ± 0.4	+4.0 ±	0.4	55.4		
Range Bias		ange	Lageos-1	Lageos-2			Starlette	Stella		Mean	Global
		(<i>mm</i>)	(<i>m</i> m)	La	geos-1&2	(mm)	(<i>mm</i>)	Starlette/Stella		mean	
					(<i>m</i> m)			(<i>mm</i>)		(<i>mm</i>)	
		2002	-5	-7		-6	-13	-13		-13	-10
		2005	+5	+3		+4	-5	-5		-5	0

Differences between Lageos & Starlette/Stella biases : target response and FTLRS detection process

The adjusted values of the FTLRS range bias in 2002 of ~ - 10 mm explained :

- Non linearity of Stanford Chronometer not modelised at this epoch : ~ 4.2 mm
- Geometrical path for external calibration not adjusted : ~ 3 mm

>Total : 7.2 mm

- Remaining correlation (~50%) between the range bias and the altitude update

-New coordinates (from 2002 & 2005 data sets) along with -5 mm mean range bias : validating the latest Jason-1 precise orbits (Bonnefond et al., 2006)

Results & Analysis									
Coornenkied									
Geographical coordinates	Coord	inates	$\Delta \phi$		۵۶		∆ h		
differences from	differ	rences	(mm)		(r	nm)	(mm)		
(Exertier et al., 2004)		2002	+0.5 ± 0).7	+2.7	7 ± 0.7	-1.2 ± 0.8		
solution:		2005	+4.1 ± 0).4	-2.9 ± 0.4		+4.0 ± 0.4		
	Camp	baign	Number	С	τφ	σλ	σh	σ	
Stability :			of solution	(m	nm)	(mm)	<i>(mm)</i>	(<i>mm</i>)	
	20	02	28	14	4.6	13.1	10.5	12.9	
	20	05	20	7	.5	12.3	10.5	10.3	

Global mean of bias (-5mm): very close to the published one (-7mm) (Exertier et al., 2004)

Coordinate updates values for 2002 and 2005 are at 3mm level in average relatively to (Exertier et al., 2004) solution.

> Coordinates differences are very small at level of residuals errors in the ITRF2000 velocities

> No significant differences between 2002 and 2005 coordinates (at level of the tectonic movement): FTLRS point is locally stable.

Conclusions & Ftlrs Prospects

Conclusions :

 Multi-satellite combination has allowed to palliate the lack of measurements on the high satellites (Lageos),

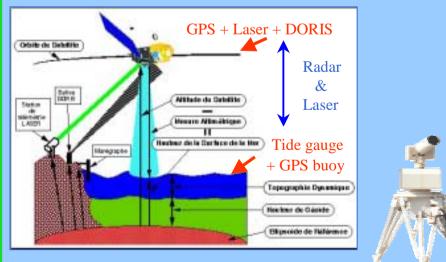
✓The improvement of the dynamical models, notably of the terrestrial gravity field (thanks to the GRACE satellite data:(*Eigen-Grace03s*) has permitted a precise computation of the orbits, in particular for the low satellites, and so a more precise geographical positioning,

 \checkmark Considerable decorrelation ($\sim 40\%$) is obtained between the range bias and the station vertical component, using the time series solution (MATLO),

The station position is stable between the two observation campaigns,

✓ In conclusion, the FTLRS has allowed a precise terrestrial positioning. That confirms its importance for the absolute calibration process of oceanographic satellites.

Conclusions & Prospects


Ftlrs Prospect :

✓ New laboratory built in Grasse Observatory to achieve technology upgrade and slr tracking between "fields campaigns"

Wednesday presentation : "Grasse Laser stations in evolution to future"

Laser upgrade to multi pulse concept (~+70 % energy) to increase link budget and facilitate Lageos acquisition

"Australian Collaborative Research Infrastructure" proposal for Ftlrs campaign

Jason 1 Calibration on Tasmania site in 2007

