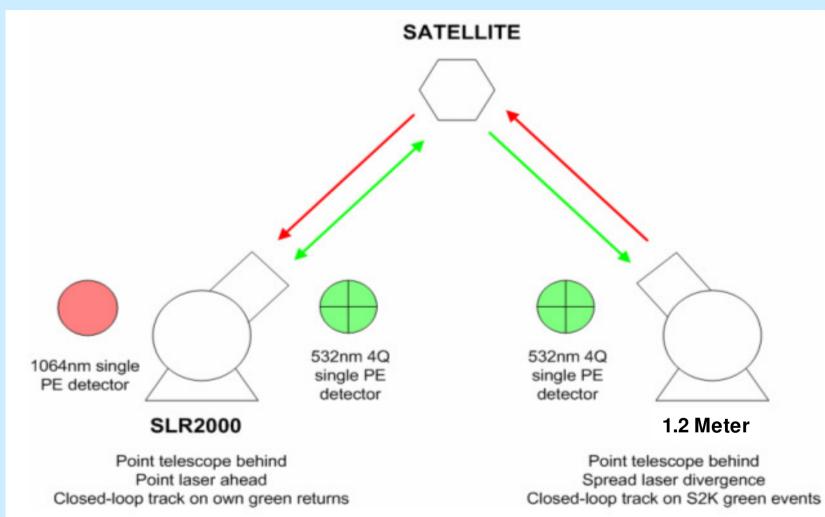
Laser Ranging at Planetary Distances From SLR2000

Jan McGarry Tom Zagwodzki Phil Dabney NASA / GSFC

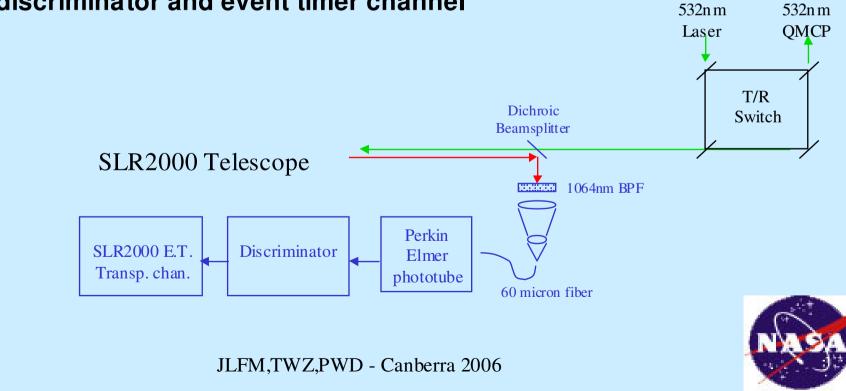
> Peter Dunn Jack Cheek Raytheon

Laser Ranging Workshop Canberra 2006

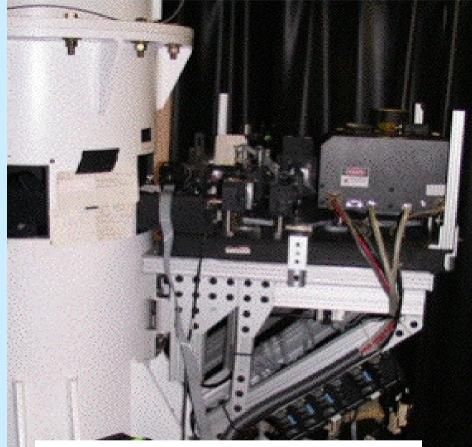

Two Separate Experiments

- Asynchronous laser transponder (2-way):
 - Goddard in-house funded R&D effort (2nd year of 2-year effort): Phil Dabney, PI.
 - Goals are:
 - (i) to demonstrate acquisition and tracking using single-photon detection, and
 - (ii) recover range and time bias using 2-way transponder data.
- Laser ranging to LRO (1-way):
 - Part of LRO mission.
 - Operational experiment Fall 2008 through January 2010.
 - Purpose is to provide laser ranges at rate of one per second with precision of < 10 cm.

Overview of Asynchronous Transponder Experiment



J. Degnan concept


Transponder Upgrades to SLR2000 (Transmit 532/Receive 1064nm)

- •Additional 2'x 3' table space (optical breadboard) has been added
- Addition of dichroic beam splitter (532/1064nm) for receive channel
- •Beam reduction optics, narrow BPF, and a fiber optic delivery to the 1064nm photodetector
- •Perkin Elmer model SPCM-AQR-14 photodetector (QE ~2%)

Additional discriminator and event timer channel

Changes at SLR2000 for Transponder

Existing SLR 2000 transceiver breadboard: Table space is unavailable for any additional optical components/experiments

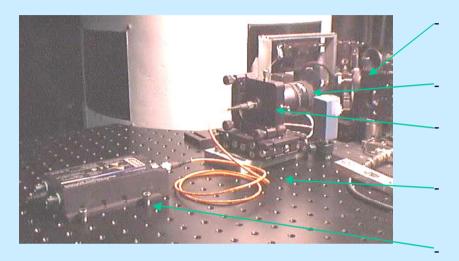
Additional transceiver breadboard is contour-cut to fit mount and allow walkway clearance.

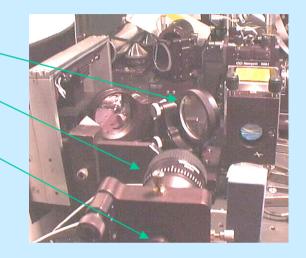
NASA


New instrumentation at S2K

Single Photon Counting Modules (SPCM):

- Perkin Elmer SPCM-ACQ(4):
 - Up to 4 channels (spares + possible NIR quadrant implementation).
 - <500 psec jitter (<250 psec is optional)</p>
 - ~2% photon detection efficiency (PDE) @ 1064 nm
 - ~45% PDE @ 532 nm
- Micro-Photon Devices PDM ("all 532nm" transponder-future):
 - Superior timing jitter: <50 psec.
 - Negligible PDE @ 1064 nm
 - ~40% PDE @ 532 nm





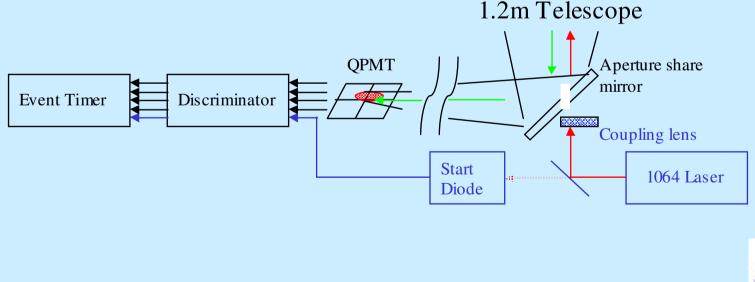
New instrumentation at S2K

> Photo of S2K transponder station receiver channel:

- Dichroic Beam-splitter (Harmonic)
- 5 x Beam Expander
- 8 mm fl fiber optic collimator
- Fiber optic feed to detector(s).
- SPCM detector

- Transponder station SPCM Input to S2K Event Timer.
- Transponder terminal (1.2 m SLR) clock reference input to S2K Event Timer.

Transponder Upgrades to 1.2m Telescope (Receive 532/Transmit 1064nm)


•Quadrant detector (Hamamatsu metal channel dynode) ungated single photon detection of SLR2000 returns

Four channel discriminator and four Event Timer channels

Continuum Inlite II-50 laser operating at 1064nm

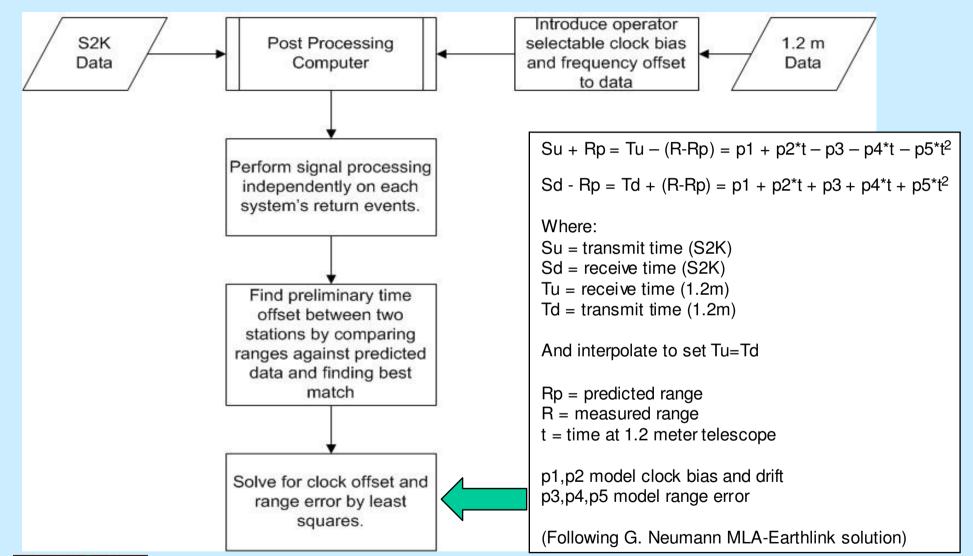
•BPF for 532nm and 1064 blocking filter

Aperture share Transmit/Receive

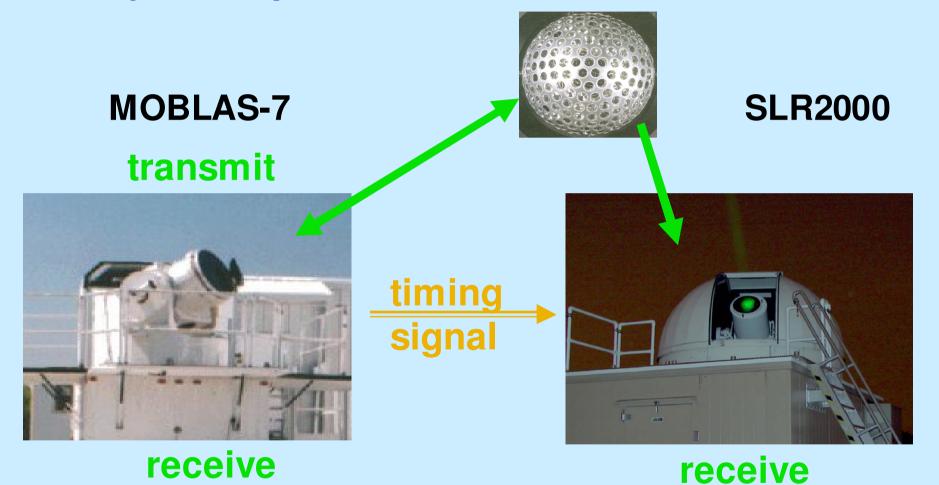
Experiment Approach

Demonstrate closed loop tracking at 1.2 meter telescope on SLR2000 green returns.

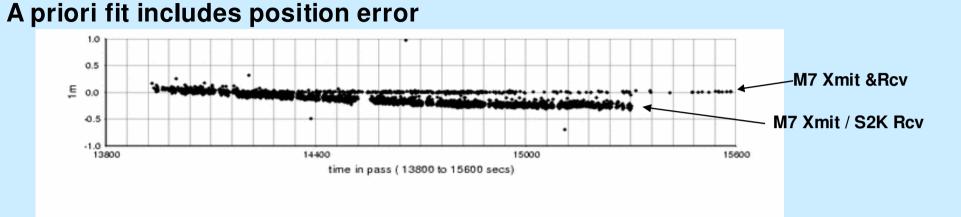
Ensure knowledge of true clock offsets with cable between systems.

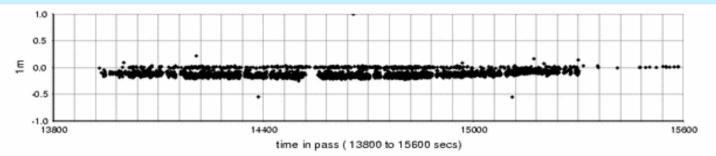

➢ Introduce biases and frequency offsets at 1.2 meter telescope clock using programmable delay generator.

Solve for ranges and time biases and verify using known satellite orbits and known clock offsets.



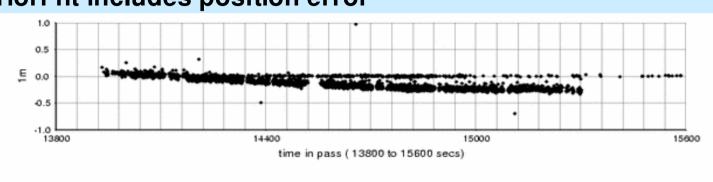
Data Analysis: 2-Way Asynchronous Transponder


Preliminary Testing Performed: Receive-Only Transponder Simulation

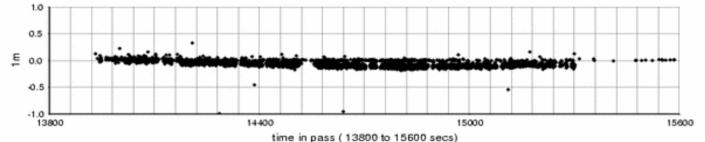


Effect of estimated parameters on Lageos2 residuals from SLR2000 and MOB7 on September 22, 2006

Estimate clock bias 0.2 msec: absorbs position error and improves fit



MOB7 Xmit & Rcv defines the orbit along the zero line



Effect of estimated parameters on Lageos2 residuals from SLR2000 and MOB7 on September 22, 2006

A priori fit includes position error

Estimate relative position by 60 cm : fit reduced significantly

Status & Timeline for Asynchronous Transponder

- > 1.2 meter telescope hardware & software mods completed
- Modifications at SLR2000 nearing completion
- Both systems have tracked green returns from MOBLAS-7
- > Demonstration of closed-loop tracking at 1.2 meter: fall 2006
- Two-way ranging with both systems begins: early 2007
- First data analysis: Spring 2007
- Experiment completed: Fall 2007

LRO-LR Objectives

- Use an Earth-to-LRO laser link to achieve the mission precision orbit determination requirement.
- Simulations of the first 3 months of the LRO mission, and experience at Mars, suggest the addition of a precision range to the S-band tracking and inclusion of LOLA altimeter data can provide an improved model of the gravity field adequate for LRO orbit reconstruction.

Measurement Requirements

- Provide relative range measurements to LRO spacecraft at <10-cm precision, at 1 Hz.
- Maintain range stability to ±1 m over 1 hour.

Changes to SLR2000 for LRO-LR

> New 28Hz diode pumped Nd:YAG master oscillator power amplifier laser:

- up to 50 mJ per pulse at 532nm
- 6-8 nsec pulse
- turn-key system projected lifetime of > 1 year of continuous use.
- > Additional optical table space added for laser.
- Removable kinematic mirror mount added to launch LRO transmit beam, and ensure easy transition between SLR and LRO lasers.
- > Aircraft radar added to system (due to non-eyesafe laser).

Software changes for LRO-LR & Transponder

- > Predictions for transponder targets is being added (Ricklefs / Rowlands)
- > Increased # digits in recording of laser fire time (LSB now = 1 psec)
- Parameters and code to ensure the transition between SLR and LRO is transparent to operator:
 - Point-ahead for LRO and behind for SLR
 - Log all fires for LRO, only returns for SLR
 - Control laser fire via RGG for LRO, control PRF for SLR
 - Turn off signal processing and searching for LRO
 - Ensure clouds do not cause software to change target from LRO
- > Changes required for Transponder and SLR to co-exist:
 - Added flags and Sitefile parameters for different wavelengths
 - Added separate data path for transponder events

Benefits of Transponder Experiments to SLR

Modifications to SLR2000 has added diagnostic capability to help resolve SLR system problems.

Funded 2 shift single operator available in 2009 for SLR (~ one hour between LRO passes).

> Additional funding for making SLR2000 operational, and a critical set of spares.

> High energy 532nm laser capable of demonstrating HEO tracking (until we can purchase new laser for SLR).

- Laser safety radar dedicated to SLR2000.
- > Demonstrated tracking capability which opens the door for future work.
- Proven system that can track Earth Science and Planetary targets.

Summary

> Transponder experiments will extend capabilities of SLR2000 and demonstrate the system's ability to do planetary ranging.

 \succ Earth orbiting SLR and planetary transponder ranging can co-exist and transitioning between the two will be seamless.

> In-house Transponder experiment will complete in late 2007. LRO-LR experiment will run from Fall 2008 through 2009.

> SLR2000 completion will not be impacted by transponder work and SLR tracking to earth orbiting satellites will continue throughout 2007, 2008, 2009.

