

Station Positioning and the ITRF

- Introduction
- ITRF2005 Experience

DORIS

- Positioning Performance (where are we ?)
- Accuracy of the Frame Parameters (Origin & Scale)
- Limitation Factors & Issues for Improvement
- Conclusion

Zuheir Altamimi

IGN, France

ILRS Workshop, Canberra, October 16-20, 2006

ITRF

- One of the 3 IERS main products (Standards)
- Should be:
 - Accurate, Stable, Reliable, etc.
 - Consistent with the 2 other IERS global references (ICRF, EOPs)
 - Used as global reference/datum for e.g.:
 'high frequency' individual TC products: weekly,
 - daily, sub-daily, etc.
- Should:
 - Have the CoM as origin
 - Have stable Scale consistent with TCG time scale
 - Satisfy the NNR condition

Examples from the ITRF2005 experience

Input data : time series of station positions and EOPs

- Accuracy of the frame parameters
- Positioning Performance

ITRF2005 Co-locations

175 tie vectors (~100 SINEX files)

ITRF2005 Derivation

Datum definition: current principles for time series stacking

- (1) Define the frame at a given epoch t₀
 => 7 degrees of freedom to be selected/fixed
- (2) Define a linear (secular) time evolution
 => 7 degrees of freedom to be selected/fixed
 Assume linear station motion:
 - Add break-wise approach for discontinuities
 - Investigate the non-linear part in the time series of the residuals

Ways of implementation

• (1) Select an external frame as a "reference" and apply minimum constraints approach:

$$(A^T A)^{-1} A^T (X_R - X_c) = 0$$

Or

- (2) Considering that for any Transf. Param. ${\it P}$

$$P(t) = P(t_0) + \dot{P} \times (t - t_0)$$

apply "inner/intrinsic" conditions:

$$P(t_0) = 0 \quad \text{and} \quad \dot{P} = 0$$

$$\mathbf{Or} \begin{cases} \sum_{k \in K} P(t_k) &= 0\\ \sum_{k \in K} \frac{P(t_k)}{t_k - t_0} &= 0 \end{cases}$$

Intrinsic SLR Origin and Scale Variations

SLR Origin and Scale Variations WRT ITRF2000

VLBI vs SLR Scale wrt ITRF2005

DORIS Origin and Scale Variations WRT ITRF2000

ITRF2005 Datum definition

- Orgin: ZERO translations/rates btw ITRF2005 and ILRS time series
- Scale: ZERO scale/rate btw ITRF2005 and IVS time series
- Orientation: ZERO rotations/rates btw ITRF2005 and ITRF2000

ITRF2005 to ITRF2000

	TX	TY	TZ	Scale
	mm	mm	mm	ppb
	mm/y	mm/y	mm/y	ppb/y
Offset At 2000.0	0.1	-0.8	-5.8	0.40
Drift	-0.2	0.1	-1.8	0.08

ITRF2005 Accuracy of the datum definition

	at epoch	Rate
	2000.0 (mm)	mm/yr
Origin	5	2
Scale	6.3	0.6
NNR		2

Positioning Performance from ITRF2005 Experience

Positioning Performance WRMS range per technique

(Internal Precision – Repeatability)

Solution	2-D WRMS mm	Up WRMS mm
VLBI	2-3	5-7
SLR	5-10	5-10
GPS	2-3	5-6
DORIS	12-25	10-25

WARNING! These are indicative numbers and are station dependant

ITRF2005 Position & Velocity Spherical Errors

Seasonal Variations GPS/IGS Sites

GPS Annual Vertical Amplitude & Phase

Annual Vertical Amplitude & Phase Australia Case

5 mm

Example of selected sites for plate angular velocities estimation

Using PB 2002 Plate boundaries (Bird, 2003)

Africa Amur Antarctica Arabia Australia Caribbean Eurasia India North America Nazca Okhotsk **South America** Somalia Yangtze

Velocity differences between ITRF2005 and ITRF2000 An example over Europe

Limitations & Improvements (1/2)

- Poor SLR & VLBI networks and their co-location
- Improve analysis
 - Systematic errors
 - Include more satellites for SLR ? (see DORIS experience)
 - GM, Satellite CoMs ?
 - Correction models consistency
 - Troposphere
 - Relativity
 - Others
 - More TRF VLBI sessions
 - Process ALL SLR data
- Improve GPS equipments : discontinuity problem, antenna settings,... !
- Improve DORIS scale and Z-component (how ?)

Limitations & Improvements (2/2)

- Improve Co-locations :
 - Re-Survey dubious Co-location sites (International effort needed)
 - Re-compute all old ties ==> Full SINEX files
 - More Co-locations with better distribution : SLR & VLBI !!!
- Monitor the ITRF frame parameters (Scale & Origin)
 - Regular time series analysis
 - Need IAG services commitment to continue providing weekly (daily) solutions
- Monitor ITRF/EOPs consistency on a regular basis
 - Coordination between ITRF and EOP PCs

Conclusions

- Origin:
 - Significant drift / ITRF2000 in TZ : 1.8 mm/y
 - Consider Impact on ITRF2005 velocity field

(ITRF2005 velocities are 1.8 mm/yr larger than ITRF2000)

- Scale:
 - $\sim 1 \ ppb$ bias btw solutions from VLBI and SLR
- NNR Condition: Still at the level of 2 mm/yr
- Still too many issues to improve ...

We are indebted to the many contributors to ITRF2005