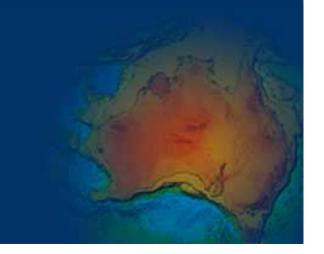


Determination of the Temporal Variations of the Earth's Centre of Mass from Multi-Year SLR Data

Ramesh GOVIND

15th International Laser Ranging Workshop
15th – 20th October2006
Canberra

Overview


- Introduction and Rationale
- Gravity SH and Geocentre Definition
- SLR Data Processed
- Computation Standard
- Lageos: COM Results
- Stella/Starlette: COM Results
- Summary from Lageos Results
- Conclusion

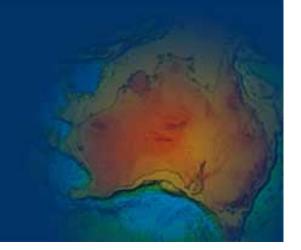
Introduction

- Geodetic parameters used to monitor global change are generally estimates of station coordinates, gravity field coefficients and their time variation
- These are referred to a TRF defined by its origin (geocentre), orientation and scale which is also time varying
- Need to know how the parameters defining the TRF also change with time
- How does the CoM (Geocentre) deviate from the defined origin?

Introduction

- Temporal variation of the CoM and orientation is a measure/symptom of mass transport -- what can be learned from this?
- What are the dynamics that cause the geocentre, orientation and scale to vary?

Gravity SH and Geocentre Definition


- MacCullagh's formula established the relationship between the lower degree harmonics of the Earth's gravity field and its physical representation [geocentre (=0), orientation, etc]
- Evaluation of the degree one harmonics give direct access to the Earth's CoM

$$X_{com} = C_{11}R_{\oplus}; \quad Y_{com} = S_{11}R_{\oplus}; \quad Z_{com} = C_{10}R_{\oplus}$$
 C_{10}, C_{11}, S_{11} are unnormalised SH coefficients
 $R_{\oplus} = \text{Earth radius}$

SLR Data Processed

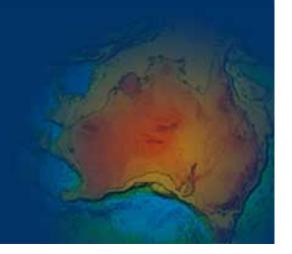
• Lageos-1 and Lageos-2 from January 1993 to end September 2006

• Stella and Starlette from beginning 1996 to end 2005

Computation Standard Geodyn / Solve

Weekly Arcs

- ITRF2000 + Earth and Ocean tide loading
- GGM01S + Earth and Ocean tides + time varying gravity
- EOP CO4 apriori

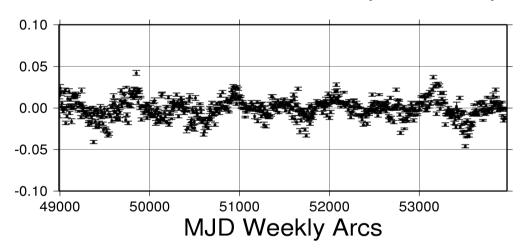

Computation Standard

Estimated Arc Parameters

- State Vector
- SRP once per arc
- General Acceleration once per arc constant (along track) and 1/rev (along & cross track)
- Range bias some stations (ILRS AWG Rules)

Estimated Global Parameters

- Station Coordinates
- X,Y Pole, LOD
- Gravity Coefficients to (2,2)

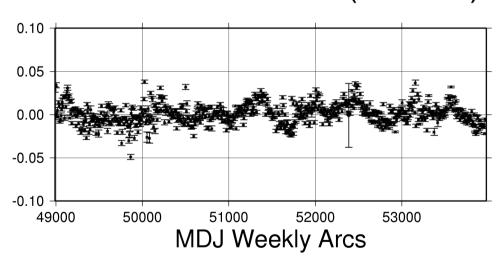


Lageos: COM Results

Dominant Periods

- $\approx 1200 \ days \ (39 \ months) 3 \ cm$
- •≈ 720 days (2 years) 3.5 cm
- • \approx 18 months

X-COM OFFSET (metres)

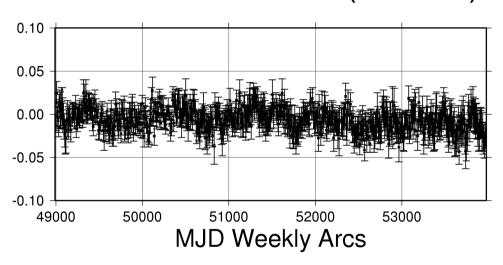


Lageos: COM Results

Dominant Periods

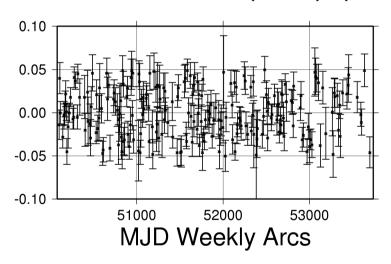
- $\approx 1200 \ days \ (39 \ months) 2 \ cm$
- $\approx 900 \ days (30 \ months) 3 \ cm$
- • $\approx 18 \text{ months} 3 \text{ cm}$

Y-COM OFFSET (metres)



Lageos: COM Results

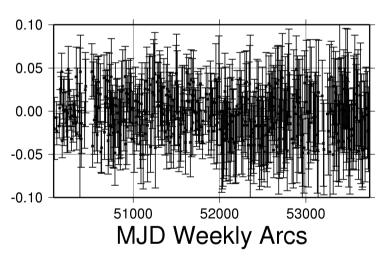
Dominant Periods


- ≈ 1200 days (39 months) 3 cm
- $\approx 900 \ days \ (30 \ months) 2 \ cm$
- •≈ 310 days 1.5 cm

Z-COM OFFSET (metres)


Stella/Starlette: COM Results

X-COM OFFSET (S/S) (metres)


Stella/Starlette: COM Results

Y-COM OFFSET (S/S) (metres)

Stella/Starlette: COM Results

Z-COM OFFSET (S/S) (metres)

Summary from Lageos Results

- All the CoM components vary with periods of approximately 40, 30 and 18 months as their dominant periods
- X-component has an additional period of 24 month period
- A 10 year period registers but not conclusive in a 14-year data set.

Conclusion

- 14 years of Lageos-1,-2 data and 10 years of Stella/Starlette data was processed and weekly CoM determined.
- Periodic motion of the CoM established.
- Next Steps:
 - Visualise the motion of the geocentre on the equatorial plane (XY or Azimuth) and elevation (z) so that some directional relationship can be established.

Conclusion

- Next Steps
 - Compute changes in moments of inertia ΔI_{xx} , ΔI_{yy} , ΔI_{zz} using the changes in the estimated gravity coefficients
 - Improve the Stella/Starlette solutions to see if there are any definitive "messages" in the data set
 - Torque