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3Least square mean effect 
Theoretical considerations

Quality of space-geodetic measurements

Representation of studied physical parameters  
as time series

Example : terrestrial observing station position time series

Modeling currently used 

« Well-known » physical effects
=

Modeled
+ Other physical effects

=
Constant estimations 

!! We need to get exact and judicious representations !! 
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Theoretical considerations
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Theoretical considerations

Estimation model
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Numerical examples: method of simulation

GINS

MeasurementsPhysical models

7-day
LAGEOS orbits 

7-day
LAGEOS-2 orbits 

MATLO POSGLOB

Estimated
station positions 

!! Real orbits and real SLR measurement times are used in simulations !!

Atmospheric loading effects are derived from the ECMWF pressure fields
http://www.ecmwf.int .

!! Estimated station position time series contain atmospheric loading signals !!

Simulated measurements

ITRF2000

Partial derivatives

Atmospheric loading
effects

AVERAGE

Signal weekly
temporal means 
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Numerical examples: results of simulations

0.130.151.262.37 10-4East

0.320.342.002.29 10-5Up
0.120.130.951.86 10-5North

RMSAverageMaximumMinimumValues (mm)

0.210.192.281.57 10-4East

0.510.424.493.14 10-5Up
0.220.191.963.87 10-4North

RMSAverageMaximumMinimumValues (mm)
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Periodic series
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niia ,1)( = niib ,1)( =New parameters = sets of coefficients
for each positioning component

Advantage : no sampling a priori imposed
BUT 

– minimal period allowed imposed by measurements
- knowledge of characteristic periods ?!
- « discontinuities » of physical signals 

(earthquakes, seasonality, etc.)
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Periodic series
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Wavelets
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discontinuities can be taken into account
representation in time and in frequency

nja ,New parameters = sets of coefficients



11Alternative models 
Wavelets

Whatever the model used :

For a computation over the global network, we need to guarantee
the homogeneity of the involved Terrestrial Reference Frame. 

We can take the opportunity of this global computation 
to derive geodynamical signals from global parameters.  
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General considerations

δX=T+DX0+RX0

T=(TX,TY,TZ)T

R=

Station positions Earth Orientation Parameters

with
and

with f=1.002737909350795

Classical approach

This model must allow us to compute together EOPs, station positions in a homogeneous 
reference frame and weekly Helmert’s transformations 

between weekly TRFs and this reference frame  

Observation system : Y=A.δX

Y: pseudo measurements or a priori residuals
A: design matrix (partial derivatives)
δX: updates of parameters (mainly EOPs and station positions)

Weak or minimum constraints

Weekly estimated solution : δX

Typically,
Daily EOPs (xp, yp, UT1 and their derivatives)
Weekly station positions for the global network

Helmert’s transformation
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Solutions :
- Station positions in the a priori reference frame (ITRF2000)
- Coherent EOPs
- Transformation parameters between the weekly TRF 
and the a priori reference frame

Goal of the new model = to obtain all these parameters in a unique process
and directly at the measurement level
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General considerations

New approach

Observation system : Y=A.δX

δX= δXC+T+DX0+RX0

δEOP= δEOPC+εR{X,Y,Z}
New parameters to be estimated

Theoretical considerations and numerical tests for SLR technique
We do not need rotations

X
X

Rank deficiency of weekly normal matrices so obtained = 7
7 = 3 (physical orientation not defined)

+ 4 (estimation of the parameters T and D)
= definition of the TRF underlying the estimated δXC

New Observation system : Y=A’.δX’
with δX’=(δEOPC,δXC,TX,TY,TZ,D)T

The weekly TRF underlying the δXC is defined by minimum constraints
with respect to ITRF2000 with a minimum network 
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First results : transformation parameters

Minimum network used for minimum constraints



15New model for SLR data processing 
First results: EOP and station position time series

5 +/- 280 µas

23 +/- 280 µas

Mount Stromlo (7849)
Yarragadee (7090)
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Towards global estimations over a long period

Observation system : Y=A.δX’ δX= δXC+T+DX0

δEOP= δEOPC

How to use this new model to reduce least square mean effect ?

For each parameter δZ, we can use the model

δZ(t)=δZ0+Σi [azi (t)cos(2πt/Ti )+bzi (t)cos(2πt/Ti )]

But

Each harmonic estimated for station positions creates an additional
Rank deficiency Generalization of minimum constraints

The number of parameters involved is large 
(several tens of thousands) Manipulation of large normal systems
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Towards global estimations over a long period

A first experiment …

Computation of the amplitudes of annual signals 
for the three translations and the scale factor

TX : 2.1 mm
TY : 3.6 mm
TZ : 1.1 mm
D : 0.9 mm

Furthermore, frequency analyses show the disappearance 
of the annual frequency in the weekly parameters estimated

with respect to the annual harmonics.



18Prospects 

Generalization of the « periodic » model
Global parameters + station positions
Harmonics linked to the oceanic tides ?
Diurnal and semi-diurnal signals on EOPs ?

Coupling of periodic series and wavelets to get a more robust model

Stochastic approaches ?


