Time-Variable Gravity from SLR and DORIS Tracking

Goddard Space Flight Center

F.G.Lemoine¹, S.M. Klosko², C.M. Cox³, T.J. Johnson⁴

- (1) Planetary Geodynamics Laboratory, Solar System Exploration Division
- NASA Goddard Space Flight Center, Code 698, Greenbelt, Maryland 20771, USA
- (2) SGT Inc., Greenbelt, Maryland 20770, USA
- (3) Raytheon Integrated Defense Systems, Arlington, Virginia 22202, USA
- (4) US Naval Observatory, Washington, DC 20392, USA

15th International Laser Ranging Workshop Canberra, Australia October 15-20, 2006

FGL/CMC 061005

Introduction

- GRACE is providing a valuable new source of high resolution gravity data for assessment of surface mass transport
- Intercomparison of this new technology with SLR/DORIS based results can accomplish several objectives:
 - Validation of GRACE, where the performance of the SLR/DORIS tracking allows
 - Improvement of the SLR/DORIS processing via new models, processing algorithms, and independent quality assurance
 - Thereby leveraging GRACE into the pre-GRACE era
- The final objective being to provide valid and useful geoid change and surface mass transport over the past ~25 years for geophysical analysis
- This is only possible because of the tracking services and missions

TERNATIONA

New SLR Processing

- Data from Lageos-1/2, Starlette, Stella, Westpac, Ajisai, GFZ-1, TOPEX/Poseidon, and BE-C
- All SLR/DORIS data reprocessed using:
 - ITRF2000 Reference frame + corrections
 - GGM01C GRACE gravity model
 - IERS2003 Solid Earth Tides, including anelasticity
 - GOT00.2 Ocean Tides
 - > Self-Consistent equilibrium long period tides, including 18.6-yr ocean tide
 - NCEP-derived atmospheric gravity *variations wrt 2000-2001 mean* modeled
 - Monthly, 20x20 correction
 - IB assumed for Ocean
 - Observed annual gravity terms to *Nmax* = 4 forward modeled
- Time Variable Gravity Solution(s):
 - 30x30 Static, 6x6 Rate + Annual and 4x4 Semi-Annual
 - 4x4 monthly series

Satellite Tracking Temporal Coverage

C_{2,0} Time Series: What happened to the 1998 anomaly?

Shown with 1980-1997 slope removed (1.34 x 10⁻¹¹ per year) Post 1997 slope nearly identical (1.36 x 10⁻¹¹ per year)

Color range: +/- 2 mm Geoid change for 1x10⁻¹⁰ change in value

C_{2,0}: Comparison: SLR vs GRACE monthly

Formal Errors shown for SLR

Formal Errors shown for SLR

Formal Errors shown for SLR

C_{2,2}: **SLR vs GRACE monthly**

Formal Errors shown for SLR

S_{2,2}: SLR vs GRACE monthly

Formal Errors shown for SLR

C_{3,0}: **SLR vs GRACE** monthly

Formal Errors shown for SLR

C_{4,0}: SLR vs GRACE monthly

Formal Errors shown for SLR

Annual and Semi-Annual Variation (mov) **SLR/DORIS Derived using 1979-1997** Resolution: ~3300 km Inverted Barometer used for Ocean Nmax=6 Annual, Nmax=4 Semi January January

of water

SLR/DORIS Derived using 1998-2005 Inverted Barometer used for Ocean *Nmax*=6 Annual, *Nmax*=4 Semi of water

Power in GRACE comparable to pre 1998 SLR GRACE (UT/CSR) Derived using 2002-2004 Includes wind and pressure driven ocean SLR/DORIS C_{2,0} terms used, *Nmax*=6

Annual Signal Strength and Uncertainty

SLR Observed Geoid Rates Through Degree 6

Period: 1979-2004

SLR Observed Geoid Rates: 1979-1997

Post-Glacial Rebound model coefficients courtesy Erik Ivins of JPL

Lower Mantle Viscosity: 1.5x10⁻²¹ PaS

100x10⁻²¹ PaS

Variability in the Observed Geoid Rates

Period: 1996-2001

GRACE Geoid Rates, 2002-2004

Based on fits of mean, rate, annual, and semi-annual terms to coefficients of UT/CSR Level-2 gravity field products, *Nmax* = 6.

With Level-2 C2,0 Rate

Using SLR/DORIS C2,0 Rate for 1999-2004

SLR/DORIS and **GRACE**

Despite the difference between the five and two year periods for the solutions SLR/DORIS and GRACE are seeing essentially the low/mid latitude signal

SLR/DORIS over 1999-2004

GRACE over 2002-2004

Conclusions

- 1998 C_{2,0} anomaly appears to be a jump, or other interannual variation, not a long term state change
- Current GRACE C_{2.0} does not agree with the SLR estimates
 - Otherwise GRACE and SLR/DORIS in reasonable agreement at degree 2
 - Significant disagreement in other zonal terms
- Overall SLR/DORIS and GRACE annual structure agrees
- Calibrated GRACE error bars seem reasonable
- Long wavelength rate terms
 - SLR/DORIS has the precision and long history necessary to address the long term geoid rate problem
 - > Yields statistically significant geoid rates rates up to *Nmax* = 6 (~3300 km)
 - For the pre 1998 period the observed geoid rates are similar to Post Glacial Rebound predictions for the polar regions
 - Significant interannual variation is evident at time scales of 5-6 years
 - GRACE rate information shows larger geoid rates over a span of two years
 - > Some similarities with SLR solution spanning the period

Future work

- Recompute time series using updated forward models.
- Add new satellites to time series:
 - Jason-2 (SLR/DORIS corrected for SAA);
 - Geosat (Doppler/Xover);
 - GFO (Doppler/Xover)
 - Etalons
 - DORIS Data