15th International Laser Ranging Workshop Extending the Range

GIOVE-A and GPS-35/36 satellite orbits: analysis of dynamical properties based on SLR-only tracking data

S. Melachroinos , F. Deleflie, F. Perosanz, O. Laurain, R. Biancale, P. Exertier

16/10/2006

- GIOVE-A, GPS 35/36 SLR-orbit estimation strategy
- Data set
 - **Orbit analysis of GIOVE-A**
- Orbit analysis of GPS 35/36
 - **Conclusions and perspectives**

SLR-orbit estimation strategy

- For the orbit fitting we are using GINS 6.1 GPS/SLR/DORIS/VLBI software
- The orbit analysis for GIOVE-A examines the overlap agreement of consecutive 2-day SLR only arcs.
- The orbit analysis for GPS 35/36 examines the overlap agreement between 10-day SLR only arcs and the IGS precise final orbits.

SLR-orbit estimation strategy

- For GIOVE-a, the solar radiation pressure modelling we are using is a new Box and Wing model.
 (Parameterisation for 8 surfaces and a-priori reflectivity and specularity coefficients).
- **X** : completes the system
- **Y** : points along the solar panels
- **D** : points towards the sun

16/10/2006

SLR-orbit estimation strategy

GINS software	GPS 36/35	GIOVE-A
Gravity field	GRIM5_c1 (20x20)	EIGEN_GL04S (20x20)
Solar Radiation Pressure	Box and Wing	Box and Wing
Datum definition	ITRF2000, EOPC04	ITRF2000, EOPC04
Tidal displacements	IERS 2003	IERS 2003
Atm. + Ocean loading , Troposphere	ECMWF,FES2004, Marinni-Murray	ECMWF, FES2004, Marinni-Murray
Satellite retro-reflector offsets	x=-0.863, y=0.524, z=-0.658	x=0.828, y=0.655, z=-0.701
Attitude model	X, Y, D	X, Y, D
Albedo and infrarouge model	Analytical model (10dx10d)	Analytical model (10dx10d)
Numerical integration	Cowell 8th order, step=180s	Cowell 8th order step=180s
Adjustement	Weighted LSQ (1cm SLR) 6 orbital param., 1 SRP coeff. , 1 Yb, 1 X,D per-rev/2-days	Weighted LSQ (1cm SLR) 6 orbital param., 1 SRP coeff., 1 Yb, 1 X,D per-rev/2-days
Orbital param.	Init. cond. from broadcasted ephemerides	Init. cond. from analytic integration based on SLR measurements

Data set

GPS 35/36 :

- SLR normal points for june 2006: 306 for GPS35, 402 for GPS36
- Fitted arcs of 2, 10 and 30 days

GIOVE-A:

- 2311 SLR normal points for june, july, august 2006.
- Fitted arcs of 2, 10, 30, 90 days

3 months GIOVE-A SLR campaign

Canberra, Australia

Orbit analysis of GIOVE-A

Canberra, Australia

Orbit analysis of GIOVE-A

10-day overlap of a GIOVE 30-day arc versus a 10 –day arc in the beginning of June 2006

GINS SLR global residuals for a 90-day, 30-day, and 10-day GIOVE arc

Canberra, Australia

Orbit analysis of GPS35/36

Orbit analysis of GPS35/36

Helmert transformation wrt. the IGS microwave orbits for GPS35 doy 157-167

- -.786898E-02 +/- 0.997E-02
- -.485564E-03 +/- 0.997E-02
- 0.598395E-01 +/- 0.997E-02
- 0.620124E-09 +/- 0.375E-09
- -.336947E-03 +/- 0.947E-04
- 0.135668E-04 +/- 0.956E-04
- -.242881E-02 +/- 0.942E-04
- 0.165406E-01 +/- 0.100E-01
- 1 : translation in x (m)
 2 : translation in y (m)
 3 : translation in z (m)
 4 : scale factor (ppb)
 5 : rotation in x (arcsec)
 6 : rotation in y (arcsec)
 7 : rotation in z (arcsec)
 4 : scale factor (m)

Helmert transformation wrt. the IGS microwave orbits for GPS36 doy 157-167

1 : translation in x - (m)0.222380E-02 +/- 0.531E-02 0.836202E-03 +/- 0.531E-02 2 : translation in y - (m)0.453187E-01 +/- 0.531E-02 3 : translation in z - (m)0.712820E-10 +/- 0.200E-09 4 : scale factor (ppb) -.303654E-03 +/- 0.508E-04 5 : rotation in x (arcsec) 0.446041E-04 + / - 0.505E-046 : rotation in y (arcsec) -.145764E-02 +/- 0.501E-04 7 : rotation in z (arcsec) 0.190437E-02 + / - 0.534E-024 : scale factor (m)

Canberra, Australia

- Mean equations of motion obtained with an analytical averaging (5th order in J₂), based on Lie transformations, which are integrated in a numerical way
 - Earth gravity field (coupling effects J_2J_n up to *n=40*), Moon & Sun effects
 - Radiation pressure, ...
- Short periodic terms (with great amplitude) filtered from osculating orbits thanks to a filtering approach
- One single arc fitted on « mean observed elements » in view of:
 - Gravitational parameters: GM, post-glacial rebound, ...
 - Non gravitational effects: dynamical modelling, error budget
 - Mission analysis

16/10/2006

Conclusions and perspectives

GIOVE - A

- We have calculated 2, 10, 30-day GIOVE-A SLR only orbits with an internal accuracy of 5-10 cm in radial direction
- For 90, 30 and 10 -day arcs the orbit dynamics is a stronger constraint than for 2 day arcs.
- Our SRP modelling is still under investigation. An adjustment procedure of the specularity and reflectivity coefficients of the satellite is on the way together with a new empirical SRP modelling.
- The residual level for the 10 and 2 days arcs are below the level of 10cm
- Further investigation would be to know the exact date of a change in the orbit as clearly seen in the 2-days arcs, and introduce a new set of accelerations.

GPS 35/36

- The overall agreement of the SLR orbits compared wrt. the IGS final orbits is of the order of 1-3 cm in Radial, 5-10 cm in Along and 25-40 cm in Cross-track.
- The internal precision stays itself in the level of 30-40 cm 3DRMS
- Offset values for the translation coefficients in Z verify once again the effect of the non-homogeneity of SLR tracking stations. A similar explanation can be given for the lack of consistency between the relative scales of SLR and microwave orbits.

16/10/2006