EXPERIMENTAL RETURN STRENGTHS FROM OPTUS-B AND GPS

John Luck and Chris Moore

EOS Space Systems Pty.Ltd Canberra, Australia

EXPERIMENT DESCRIPTION

PURPOSE: To take a first step in characterizing retroreflector arrays in their actual space environments.

- **AIM:** To compare return SLR signal strengths from GPS35/36 and OPTUS B1/B3, and hence find ratio of their lidar cross-sections.
- **METHOD**: Range in successive "bursts" to a GPS and an Optus B target when they are in close proximity in the sky (< 5°, say). In each burst:
- (a) Maximize return rate by fine pointing adjustments;
- (b) Then adjust ND filter in Receive Path until returns are just extinguished.

THEORY

- **BRIGHTNESS:** Return signal strength when pointing is optimized.
- B Brightness at extinguishment, i.e. detection threshold (assumed constant)
- V Vacuum Brightness, corrected for ND filter (N), laser transmitted power (P), atmosph.Transmission (T, 1-way)
- V = k.B / PNT² (k is a proportionality constant)

CROSS-SECTION: $[\sigma = n.4\pi (A / \lambda)^2]$ C Relative cross-section, <u>observed</u>, assuming normal incidence

- C Relative cross-section, <u>observed</u>, assuming normal incidence angle etc.
- R Distance from telescope to satellite
- $\mathbf{C} = \mathbf{V}\mathbf{R}^4 = \mathbf{k}.\mathbf{B}.\mathbf{R}^4 / \mathbf{P}.\mathbf{N}.\mathbf{T}^2$

CORRECTION FORMULAE NEUTRAL DENSITY FILTER

 $N = 10^{-ND}$ where *ND* is ND filter wheel setting

ATMOSPHERIC TRANSMISSION

(from Degnan, 1993)

 $T = \exp \{ -0.21072 \exp(-h/1.2) / \sin E \}$

Where <u>h km is station geoid height</u>, <u>E is Elevation Angle</u>

SATELLITE CHARACTERISTICS

OPTUS B1 and B3

Geostationary Orbits, a = 42165 km, i $\approx 0^{\circ}$, e ≈ 0 B1: Longitude 160°E, Az, El from Stromlo: 18.6°, 47.4° B3: 156°E 5.0°, 48.9°

<u>Array</u>: 14 tri-roundular solid Herseus fused silica cubes, inscribed diameter 38 mm, mounted in 20 cm x 18 cm tray, Vespel O-rings. Indium Tin Oxide coatings on all faces.

<u>**Theoretical Array Cross-Section</u>**: 46 x 10⁶ m² @ 532 nm (*Arnold, 2006*)</u>

GPS 35 and 36

<u>Array</u>: 32 solid fused silica cubes 25 mm diameter, Al coated on reflecting surfaces

<u>Theoretical Array Cross-Section</u>: 20 x 10⁶ m² @ 532 nm (Arnold, 2006)

OBSERVATIONS, May 2006

Date	Target	EI	Power	ND	V	Rej
(May'06)		(deg)	(W)			
10	GPS36	75.9	9	2.8	78.1	
	B1	47.4	9	2.2	21.1	
	GPS36	39.5	9	0.5	0.5	*
	B3	48.9	9	4.0	1480.7	*
13	B3	48.9	2	2.0	66.6	
	GPS 36	40.9	2	3.0	695.8	*
	B3	48.9	2	2.0	66.6	
15	B3	48.9	12	3.0	111.1	
	GPS36	85.0	2	1.9	49.4	
	B3	48.9	2	0.9	5.3	
	GPS36	63.6	2	2.3	127.0	
	GPS36	61.7	2	2.9	507.8	
	B3	48.9	2	0.6	2.7	
	GPS36	55.6	2	2.4	163.3	
	B3	48.9	2	0.8	4.2	
	GPS36	46.2	2	2.1	85.0	
	B3	48.9	2	8.0	4.2	
	B3	48.9	2	1.0	6.7	
	GPS36	33.6	2	1.0	7.4	
16	GPS36	74.8	12	3.5	329.8	
	B3	48.9	12	0.6	0.4	*
	GPS36	62.0	2	1.7	32.0	
	B3	48.9	12	2.8	70.1	
	GPS36	44.4	2	1.2	10.8	
	B3	48.9	12	2.3	22.2	

OBSERVATIONS SUMMARY

- 4 clear nights during 10-16 May 2006
- High Energy Laser (HEL) at 1064 nm through 1.8-metre telescope
- 12 bursts to GPS 36, 12 to OPTUS B3, 1 to B1
- Standardized Brightness (V) varied 0.5 695.8 on GPS, 0.4
 1480.7 for OPTUS. Huge variation !
- After rejecting these extremes, the averages give: Standardized Brightness Ratio $V_{GPS} / V_{OPTUS} = 4.2$

Measured Cross Section Ratio $C_{GPS} / C_{OPTUS} = 0.48$ c.f. Theoretical Cross-Section Ratio0.43

CONCLUSIONS

- Thanks to creative use of statistics, experimental ratios agree closely with theoretical predictions.
- It suggests that this might indeed be a viable technique for comparing real cross-sections.
- Alternative measurement schemes might be:
 - Direct measurement of signal strengths (not available at Stromlo but Optus is!)
 - Conversion of return rates to signal strengths (see e.g. Appleby & Gibbs (1994))

MORE EXPERIMENTS ?

- More measurements on GPS (which are now drifting back into night passes at Stromlo).
- OPTUS vs. GIOVE-A (but: where is it?)
- OPTUS vs. GLONASS, including Return Rate method to check on ND-to-Extinction method.
- LLR Brightness Ratio: $V_{GPS}/V_{Apollo15} = 1489$ (corresponding to ND 3.2)
- Encourage other stations to do similar experiments using their available targets and measurement methods.
- Prepare for Galileo, LARES, etc.