# LLR Link Efficiency Calibration

Probing the Health of the Lunar Reflectors

∕

Tom Murphy (UCSD)

#### The Basic Link Equation

$$N_{\rm rx} = N_{\rm tx} \eta_c^2 \eta_r Q n_{\rm refl} \left(\frac{d}{\phi r}\right)^2 \left(\frac{D}{\Phi r}\right)^2$$

 $\eta_{\rm c}$  = one-way optical throughput (encountered twice)

- $\eta_{\rm r}$  = receiver throughput (dominated by narrow-band filter )
- Q = detector quantum efficiency
- $n_{refl}$  = number of corner cubes in array (100 or 300)
- d = diameter of corner cubes (3.8 cm)
- $\phi$  = outgoing beam divergence (atmospheric "seeing")
- *r* = distance to moon
- $\Phi$  = return beam divergence (diffraction from cubes)
- D = telescope aperture (diameter; 3.5 m)

$$N_{\rm rx} = 5.4 \left(\frac{E_{\rm pulse}}{115 \text{ mJ}}\right) \left(\frac{\eta_c}{0.4}\right)^2 \left(\frac{\eta_r}{0.25}\right) \left(\frac{Q}{0.3}\right) \left(\frac{n_{\rm refl}}{100}\right) \left(\frac{1 \text{ arcsec}}{\phi}\right)^2 \left(\frac{10 \text{ arcsec}}{\Phi}\right)^2 \left(\frac{385000 \text{ km}}{r}\right)^4$$

• APOLLO should see 5 photons per pulse on Apollo 11 & 14; 15 on Apollo 15

### Refining the Estimates, Part I

Terms contributing to the common (two-way) path,  $\eta_c \approx 0.51$ 

| symbol            | value | fractional<br>error | # occur | description                          |
|-------------------|-------|---------------------|---------|--------------------------------------|
| $\eta_{ m atmos}$ | 0.87  | 0.03                | 1       | atmospheric transmission             |
| $\eta_1$          | 0.825 | 0.03                | 1       | Aluminum-coated primary mirror       |
| $\eta_2$          | 0.875 | 0.03                | 1       | Aluminum-coated secondary mirror     |
| $\eta_3$          | 0.825 | 0.03                | 1       | Aluminum-coated tertiary mirror      |
| $\eta_4$          | 0.992 | 0.01                | 1       | High-power dielectric turning-mirror |
| $\eta_5$          | 0.998 | 0.01                | 1       | High-power dielectric turning-mirror |
| $\eta_{\rm L}$    | 0.996 | 0.01                | 3       | AR-coated lens                       |

### Refining the Estimates, Part II

Terms contributing to the receiver,  $\eta_r \approx 0.43$ 

| symbol            | value   | fractional<br>error | # occur | description                              |
|-------------------|---------|---------------------|---------|------------------------------------------|
| $\eta_{ m TR}$    | 0.998   | 0.01                | 1       | AR-coated Transmit/Receive optic         |
| $\eta_6$          | 0.995   | 0.01                | 1       | broad-band dielectric turning-mirror     |
| $\eta_7$          | 0.995   | 0.01                | 1       | broad-band dielectric turning-mirror     |
| $\eta_{ m BS}$    | 0.93    | 0.01                | 1       | uncoated fused-silica beam splitter      |
| $\eta_{ m D}$     | 0.998   | 0.01                | 3       | AR-coated variable attenuator disks      |
| $\eta_{\rm L}$    | 0.996   | 0.01                | 1       | AR-coated lens                           |
| $\eta_{\mu  m L}$ | 0.95    | 0.04                | 1       | microlens: uncoated epoxy plus AR side   |
| f <sub>µL</sub>   | 0.67    | 0.04                | 1       | measured microlens efficiency            |
| f <sub>APD</sub>  | 0.5–1.0 | 0.10                | 1       | APD fill factor: seeing/source dependent |

### Refining the Estimates, Part III

Other terms contributing to flux check

| symbol                   | value                            | fractional<br>error | # occur | description                         |
|--------------------------|----------------------------------|---------------------|---------|-------------------------------------|
| Q                        | 0.30                             | 0.12                | 1       | APD photon detection efficiency     |
| D                        | 3.26 m                           | 0.01                | 2       | effective aperture: $A = \pi D^2/4$ |
| $\Delta\lambda_{\rm NB}$ | 0.95 nm                          | 0.05                |         | effective filter bandpass           |
| $\Delta t_{\sf APD}$     | 95 ns                            | 0.03                |         | APD integration time per gate       |
| F <sub>0</sub>           | 3.9×10 <sup>-11</sup><br>W/m²/nm | 0.03                |         | zero-magnitude flux calibration     |

### Checking the one-way flux

- Two ways: use star, or use moon
  - both give consistent results
- Moon around Apollo 15 is 3.60 magnitudes per square arcsec
  - at full-moon illumination
  - 2.87 mag into 1.4×1.4 arcsec APD field of view
  - fill factor ( $f_{APD}$ ) is 13/16 (three channels missing)
- Measure 0.40 background photons per gate at full moon on Apollo 15
- Calculate  $0.40 \pm 0.08$  using numbers presented above
  - Q was allowed to vary to match condition
  - came out right at expected value (30%) for uncoated APDs of this structure
- Thus much of link equation is confirmed
  - one-way photon detection efficiency: 2.3%

#### Apollo 15 Background Count Rate



ILRW15, Canberra

#### Additional Parameters for Ranging

| symbol              | value                  | fractional<br>error | # occur | description                          |
|---------------------|------------------------|---------------------|---------|--------------------------------------|
| $\eta_{NB}$         | 0.35                   | 0.07                | 1       | narrow-band filter throughput        |
| f <sub>launch</sub> | 0.60                   | 0.05                | 1       | central obstruction on Gaussian beam |
| E <sub>pulse</sub>  | 0.100 J                | 0.07                | 1       | typical pulse energy                 |
| n <sub>refl</sub>   | 300                    |                     | 1       | # cubes in Apollo 15 (largest) array |
| $\eta_{ m refl}$    | 0.93                   | 0.01                | 1       | double-pass through corner-cube face |
| d                   | 0.038 m                |                     | 2       | diameter of individual corner cube   |
| r                   | 3.85×10 <sup>8</sup> m | 0.02                | -4      | typical earth-moon distance          |
| $\phi$              | 0.8 arcsec             | 0.15                | -2      | best outbound (seeing) divergence    |
| Φ                   | 10 arcsec              | 0.15                | -2      | divergence from return               |

#### Results of simple link equation

$$N_{\rm rx} = N_{\rm tx} \eta_c^2 \eta_r Q n_{\rm refl} \left(\frac{d}{\phi r}\right)^2 \left(\frac{D}{\Phi r}\right)^2$$

 Using parameters from previous tables, expected *average* return from Apollo 15 array is:

#### $12 \pm 6$ photons per pulse

- Example best ranges (December 2005, January 2006) were ~0.5 photons per pulse for brief periods (~30 sec)
  - best average rate over several minutes is 0.25 photons/pulse
- Ratio is 12/0.5 = 24
- Estimated uncertainty is 50% of average
  - would have to apply this (multiplicatively) 4.5 times to satisfy result
  - $12*0.5^{4.5} \rightarrow 0.5 (12 \rightarrow 6 \rightarrow 3 \rightarrow 1.5 \rightarrow 0.75...$  in successive factors of two)
  - thus this result is approximately  $4.5\sigma$  in significance

#### A more sophisticated approach

- Many intricacies brushed under the rug:
  - outgoing beam profile (*not* tophat)
  - theoretical corner cube diffraction pattern
  - manufacturing tolerance of corner cubes
  - shadowing of recessed cubes in palette
  - velocity aberration
  - thermal degradation of cubes in sunlight
- A second stage of analysis treats these deficient

## **Outgoing Beam Profile**

- Confidence in our seeing-limited outgoing beam comes from:
  - shear plate on collimated beam allows tuning of divergence at a level corresponding to 0.04 arcsec outside the telescope
  - corner cubes at telescope exit aperture can test divergence: see no divergence at < 0.5 arcsec level of confidence</li>
  - rastering the transmit/receive offset while keeping the receiver fixed (i.e., slewing beam on moon with receiver fixed) has signal disappearing if we move the beam by more than about one arcsecond
- Should we really use 0.8 arcseconds?
  - Our CCD measures seeing consistent with other instruments on the telescope (thus APOLLO optics are not bad)
  - In good seeing, we see starlight concentrated on central 4 pixels of APD array (2×2 box is 0.7 arcsec on a side)
  - The median seeing for this telescope is 1.1 arcsec
    - thus best APOLLO performance likely better than this
  - The 0.5 photon per pulse results were obtained in very good seeing



Walking the beam toward optimal signal gives idea of beam profile In this case, less than or about 1 arcsec FWHM fits reasonably well

#### Correction for Gaussian Beam

- The simple form of the link equation assumes a "tophat" intensity distribution
- Gaussian distribution with same FWHM (full-width at half-max) as tophat has central intensity 0.69 (In(2)) times that of tophat with same total intensity



same total intensity when revolved and summed in azimuthal axis



images courtesy David Arnold

- The diffraction pattern from an uncoated total internal reflection (TIR) corner cube is far from the tophat pattern used in the link equation
- The core follows the full-diameter Airy pattern
- But the wings contain significant power
- Peak is about 0.25 of perfect Airy pattern
- 36% of energy inside first Airy ring (84% for perfect Airy)

#### Airy vs. TIR



#### Central Irradiance Compared to Tophat

- Compared to a tophat with diameter  $\lambda/D$ , what is the central irradiance of an uncoated (total internal reflection) corner cube?
- Relative to perfect Airy pattern, central irradiance is:
  - 0.278 if no reflective loss at front surface
  - 0.248 if uncoated fused silica front surface
- Central Airy irradiance from diameter D is reduced from  $\lambda/D$  tophat by factor of 0.68
- Composite reduction of central irradiance is:
  - 0.182 if no reflective loss at front surface
  - 0.169 if uncoated fused silica front surface
- Recipe: treat return as tophat (Φ=2.89 arcsec at 532 nm) de-rated by 0.182
  - will apply 0.93 reflection loss separately

### Velocity Aberration and Recessed Cubes

- Velocity of lunar orbit is about 1000 m/s
- Earth rotation is 400 m/s
- Typical velocity offset is 600–900 m/s
  - $2v/c \rightarrow 4$ -6  $\mu$ R = 0.8-1.2 arcsec
- Results in de-rating irradiance:
  - typically factor of 0.64-0.86 for 532 nm [avg = 0.75]
- Apollo 11 cubes recessed by half-diameter with 1.5° half-angle conical opening (6° for Apollo 14 and 15 arrays)
- Lunar libration (~7° in both longitude and latitude) presents angular offsets as high as 10°
  - typical angle is 6.5°
- Central irradiance down as much as 0.50 (at 10°)



All recesses are half-diameter, and throughput is total geometrical flux. central diffraction irradiance is reduced from this, but not much at first

#### Manufacturing Tolerance

- Nominal angular tolerance on Apollo cubes is  $\pm 0.3$  arcsec
- The cubes that were selected for flight all demonstrated at least 90% the theoretical central irradiance
  - Use factor of 0.93 to account for typical manufacture error

#### **Thermal Impact**

- Detailed thermal conductivity/radiation studies predict degradation of central irradiance at a range of sun angles
  - most of effect is thermal gradient of refractive index



FIGURE 14-4.-Comparison of calculated thermal performance expected from Apollo 11, 14, and 15 LRRR arrays.

20.10.2006

### Putting it all together

- Shortfall from normal-incidence central irradiance due to:
  - velocity aberration: 0.64-0.86
  - angular offset: 0.5–1.0
  - thermal degradation: 0.7–1.0 (for Apollo 15)
  - manufacturing tolerance: 0.90–1.0
- amounts to 0.20–0.86
- Now using a tophat with angular diameter  $\lambda/D$  ( $\Phi$ =2.89 arcsec at 532 nm) and associated TIR de-rating of 0.182, together with above detrimental effects, and 0.93 reflection loss from surface, we must de-rate the Apollo performance by a factor of 0.034–0.146
- Equivalent to tophat of 8–15 arcsec of uniform irradiance

#### Two cases



- Vel. aber.: 1.09 arcsec  $\rightarrow 0.71$
- Sun:  $-73^{\circ}$  to normal  $\rightarrow 0.85$
- range: 371425 km
- expect 9.8 ± 4 photons/pulse
- 30 s peak was 0.5 photons/pulse
- ratio: 20

20.10.2006

- Vel. aber.: 0.86 arcsec  $\rightarrow$  0.81
- Sun: +35° to normal  $\rightarrow 0.70$
- range: 404301 km
- expect  $6.4 \pm 2.7$  photons/pulse
- 30 s peak was 0.5 photons/pulse
- ratio: **13**

### Scaling to Other LLR Stations

- A quick-and-dirty scaling of APOLLO to MLRS and OCA is interesting: assume similar detector/optical performance
- Use aperture, seeing (or image quality), and pulse energy alone
- MLRS:  $\left(\frac{3.5 \text{ m}}{0.76 \text{ m}}\right)^2 \left(\frac{3 \text{ arcsec}}{1 \text{ arcsec}}\right)^2 \left(\frac{100 \text{ mJ}}{E}\right) \approx 180 \left(\frac{100 \text{ mJ}}{E}\right)$
- So if APOLLO gets 1/4 photons per pulse, MLRS  $\rightarrow$  1/720
  - using E = 100 mJ
  - if we allow 2 arcsec for a "good" night, this goes to 1/320
- OCA:  $\left(\frac{3.5 \text{ m}}{1.5 \text{ m}}\right)^2 \left(\frac{2 \text{ arcsec}}{1 \text{ arcsec}}\right)^2 \left(\frac{100 \text{ mJ}}{E}\right) \approx 22 \left(\frac{100 \text{ mJ}}{E}\right)$
- So if APOLLO gets 1/4 photons per pulse, OCA  $\rightarrow$  1/40
  - using E = 200 mJ
  - if we allow 1 arcsec for a "good" night, this goes to 1/10

#### Source of Degradation

- To get a factor of 16 degradation at the array, we need a factor of 4 surface degradation (since light passes through twice)
- Dust is a very likely culprit
  - Apollo 17 astronauts saw glow & rays scattering at sunrise (from orbit)
  - Apollo 17 LEAM module saw tremendous dust activity at lunar sunrise/sunset, including horizontal transport
  - LEAM module began to overheat in lunar day: possibly albedo reduction due to dust plus thermal blanketing effect
  - Dynamic dust fountain model (Timothy Stubbs et al.) predicts manykilometer ballistic lofting of dust due to charging (solar radiation and solar wind)
- Micrometeorites and meteoric ejecta can pit surface of glass
  - could have a frosted surface by now