
LLR Link Efficiency Calibration

Probing the Health of the Lunar Reflectors

Tom Murphy

(UCSD)



20.10.2006 ILRW15, Canberra 2

The Basic Link Equation

ηc = one-way optical throughput (encountered twice)

ηr = receiver throughput (dominated by narrow-band filter )
Q = detector quantum efficiency

nrefl = number of corner cubes in array (100 or 300)

d = diameter of corner cubes (3.8 cm)

φ = outgoing beam divergence (atmospheric “seeing”)

r = distance to moon

Φ = return beam divergence (diffraction from cubes)

D = telescope aperture (diameter; 3.5 m)

• APOLLO should see 5 photons per pulse on Apollo 11 & 14; 15 on Apollo 15
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Refining the Estimates, Part I

AR-coated lens30.010.996ηL

High-power dielectric turning-mirror10.010.998η5

High-power dielectric turning-mirror10.010.992η4

Aluminum-coated tertiary mirror10.030.825η3

Aluminum-coated secondary mirror10.030.875η2

Aluminum-coated primary mirror10.030.825η1

atmospheric transmission10.030.87ηatmos

description# occurfractional 

error

valuesymbol

Terms contributing to the common (two-way) path, ηc ≈ 0.51
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Refining the Estimates, Part II

Terms contributing to the receiver, ηr ≈ 0.43

APD fill factor: seeing/source dependent10.100.5–1.0fAPD

measured microlens efficiency10.040.67fµL

microlens: uncoated epoxy plus AR side10.040.95ηµL

AR-coated lens10.010.996ηL

AR-coated variable attenuator disks30.010.998ηD

uncoated fused-silica beam splitter10.010.93ηBS

broad-band dielectric turning-mirror10.010.995η7

broad-band dielectric turning-mirror10.010.995η6

AR-coated Transmit/Receive optic10.010.998ηTR

description# occurfractional 

error

valuesymbol
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Refining the Estimates, Part III
Other terms contributing to flux check

zero-magnitude flux calibration—0.033.9×10-11

W/m2/nm

F0

APD integration time per gate—0.0395 ns∆tAPD

effective filter bandpass—0.050.95 nm∆λNB

effective aperture: A = πD2/420.013.26 mD

APD photon detection efficiency10.120.30Q

description# occurfractional 

error

valuesymbol
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Checking the one-way flux

• Two ways: use star, or use moon

– both give consistent results

• Moon around Apollo 15 is 3.60 magnitudes per square arcsec

– at full-moon illumination

– 2.87 mag into 1.4×1.4 arcsec APD field of view

– fill factor (fAPD) is 13/16 (three channels missing)

• Measure 0.40 background photons per gate at full moon on 
Apollo 15

• Calculate 0.40 ± 0.08 using numbers presented above

– Q was allowed to vary to match condition

– came out right at expected value (30%) for uncoated APDs of this 

structure

• Thus much of link equation is confirmed

– one-way photon detection efficiency: 2.3%
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Apollo 15 Background Count Rate
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Additional Parameters for Ranging

divergence from return−20.1510 arcsecΦ

best outbound (seeing) divergence−20.150.8 arcsecφ

typical earth-moon distance−40.023.85×108 mr

diameter of individual corner cube2—0.038 md

double-pass through corner-cube face10.010.93ηrefl

# cubes in Apollo 15 (largest) array1—300nrefl

typical pulse energy10.070.100 JEpulse

central obstruction on Gaussian beam10.050.60flaunch

narrow-band filter throughput10.070.35ηNB

description# occurfractional 

error

valuesymbol
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Results of simple link equation

• Using parameters from previous tables, expected average return 
from Apollo 15 array is:

12 ± 6 photons per pulse

• Example best ranges (December 2005, January 2006) were ~0.5
photons per pulse for brief periods (~30 sec)

– best average rate over several minutes is 0.25 photons/pulse

• Ratio is 12/0.5 = 24

• Estimated uncertainty is 50% of average

– would have to apply this (multiplicatively) 4.5 times to satisfy result

– 12*0.54.5 → 0.5 (12→6→3→1.5→0.75… in successive factors of two)

– thus this result is approximately 4.5σ in significance
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A more sophisticated approach

• Many intricacies brushed under the rug:

– outgoing beam profile (not tophat)

– theoretical corner cube diffraction pattern

– manufacturing tolerance of corner cubes

– shadowing of recessed cubes in palette

– velocity aberration

– thermal degradation of cubes in sunlight

• A second stage of analysis treats these deficient
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Outgoing Beam Profile

• Confidence in our seeing-limited outgoing beam comes from:

– shear plate on collimated beam allows tuning of divergence at a 
level corresponding to 0.04 arcsec outside the telescope

– corner cubes at telescope exit aperture can test divergence: see no 
divergence at < 0.5 arcsec level of confidence

– rastering the transmit/receive offset while keeping the receiver fixed 
(i.e., slewing beam on moon with receiver fixed) has signal 
disappearing if we move the beam by more than about one 
arcsecond

• Should we really use 0.8 arcseconds?

– Our CCD measures seeing consistent with other instruments on the
telescope (thus APOLLO optics are not bad)

– In good seeing, we see starlight concentrated on central 4 pixels of 
APD array (2×2 box is 0.7 arcsec on a side)

– The median seeing for this telescope is 1.1 arcsec
• thus best APOLLO performance likely better than this

– The 0.5 photon per pulse results were obtained in very good seeing
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Walking the beam toward optimal signal gives idea of beam profile

In this case, less than or about 1 arcsec FWHM fits reasonably well
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Correction for Gaussian Beam

• The simple form of the link equation assumes a “tophat” intensity 
distribution

• Gaussian distribution with same FWHM (full-width at half-max) as 
tophat has central intensity 0.69 (ln(2)) times that of tophat with 
same total intensity

same total intensity

when revolved and

summed in azimuthal

axis
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Proper treatment of C.C. diffraction

• The diffraction pattern from an uncoated total internal reflection 
(TIR) corner cube is far from the tophat pattern used in the link 
equation

• The core follows the full-diameter Airy pattern

• But the wings contain significant power

• Peak is about 0.25 of perfect Airy pattern

• 36% of energy inside first Airy ring (84% for perfect Airy)

images courtesy David Arnold
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Airy vs. TIR
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Central Irradiance Compared to Tophat

• Compared to a tophat with diameter λ/D, what is the central 
irradiance of an uncoated (total internal reflection) corner cube?

• Relative to perfect Airy pattern, central irradiance is:

– 0.278 if no reflective loss at front surface

– 0.248 if uncoated fused silica front surface

• Central Airy irradiance from diameter D is reduced from λ/D
tophat by factor of 0.68

• Composite reduction of central irradiance is:

– 0.182 if no reflective loss at front surface

– 0.169 if uncoated fused silica front surface

• Recipe: treat return as tophat (Φ=2.89 arcsec at 532 nm) de-rated 
by 0.182

– will apply 0.93 reflection loss separately
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Velocity Aberration and Recessed Cubes

• Velocity of lunar orbit is about 1000 m/s

• Earth rotation is 400 m/s

• Typical velocity offset is 600–900 m/s

– 2v/c → 4–6 µR = 0.8–1.2 arcsec

• Results in de-rating irradiance:

– typically factor of 0.64–0.86 for 532 nm [avg = 0.75]

• Apollo 11 cubes recessed by half-diameter with 1.5° half-angle 
conical opening (6° for Apollo 14 and 15 arrays)

• Lunar libration (~7° in both longitude and latitude) presents 
angular offsets as high as 10°

– typical angle is 6.5°

• Central irradiance down as much as 0.50 (at 10°)
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Recessed Cube Influence

All recesses are half-diameter, and throughput is total geometrical flux.

central diffraction irradiance is reduced from this, but not much at first

data courtesy Jim Williams
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Manufacturing Tolerance

• Nominal angular tolerance on Apollo cubes is ±0.3 arcsec

• The cubes that were selected for flight all demonstrated at least 
90% the theoretical central irradiance 

– Use factor of 0.93 to account for typical manufacture error
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Thermal Impact

• Detailed thermal conductivity/radiation studies predict 
degradation of central irradiance at a range of sun angles

– most of effect is thermal gradient of refractive index
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Putting it all together

• Shortfall from normal-incidence central irradiance due to:

– velocity aberration: 0.64–0.86

– angular offset: 0.5–1.0

– thermal degradation: 0.7–1.0 (for Apollo 15)

– manufacturing tolerance: 0.90–1.0

• amounts to 0.20–0.86

• Now using a tophat with angular diameter λ/D (Φ=2.89 arcsec at 
532 nm) and associated TIR de-rating of 0.182, together with 
above detrimental effects, and 0.93 reflection loss from surface, 
we must de-rate the Apollo performance by a factor of 0.034–
0.146

• Equivalent to tophat of 8–15 arcsec of uniform irradiance
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Two cases

• Libration angle: 3.94° → 0.84

• Vel. aber.: 1.09 arcsec → 0.71

• Sun: −73° to normal → 0.85

• range: 371425 km

• expect 9.8 ± 4 photons/pulse

• 30 s peak was 0.5 photons/pulse

• ratio: 20

• Libration angle: 4.04° → 0.81

• Vel. aber.: 0.86 arcsec → 0.81

• Sun: +35° to normal → 0.70

• range: 404301 km

• expect 6.4 ± 2.7 photons/pulse

• 30 s peak was 0.5 photons/pulse

• ratio: 13
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Scaling to Other LLR Stations

• A quick-and-dirty scaling of APOLLO to MLRS and OCA is 
interesting: assume similar detector/optical performance

• Use aperture, seeing (or image quality), and pulse energy alone

• MLRS:

• So if APOLLO gets 1/4 photons per pulse, MLRS → 1/720

– using E = 100 mJ

– if we allow 2 arcsec for a “good” night, this goes to 1/320

• OCA:

• So if APOLLO gets 1/4 photons per pulse, OCA → 1/40

– using E = 200 mJ

– if we allow 1 arcsec for a “good” night, this goes to 1/10
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Source of Degradation

• To get a factor of 16 degradation at the array, we need a factor of 
4 surface degradation (since light passes through twice)

• Dust is a very likely culprit

– Apollo 17 astronauts saw glow & rays scattering at sunrise (from

orbit)

– Apollo 17 LEAM module saw tremendous dust activity at lunar 

sunrise/sunset, including horizontal transport

– LEAM module began to overheat in lunar day: possibly albedo

reduction due to dust plus thermal blanketing effect

– Dynamic dust fountain model (Timothy Stubbs et al.) predicts many-

kilometer ballistic lofting of dust due to charging (solar radiation and 

solar wind)

• Micrometeorites and meteoric ejecta can pit surface of glass

– could have a frosted surface by now


