Possibility of the Near Earth objects distance measuaraytuit yith laser ranging
 M.Abele, L.Osipova

Fig. 1. Heasurments of minor planets with laser ranging device

$$
\begin{equation*}
d_{l a}=2 \cdot L \cdot \operatorname{tg~} r_{d} \tag{1}
\end{equation*}
$$

where r_{d} is the diffraction, the angle radius $r_{d}=1.2197 \lambda / d t$

As the energy li diffraction image is irregular, the energy radiated in the direction of the minor planet Eep can be calculated using formula:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{ep}}=\mathrm{E}_{\mathrm{las}} \cdot \mathrm{c}_{\mathrm{at}} \cdot \mathrm{c}_{\mathrm{op}} \quad \frac{\int_{\mathrm{t}}^{\mathrm{d} / 2} \mathrm{i}_{\mathrm{i}}(\mathrm{r}) \cdot \mathrm{r} \cdot \mathrm{dr}}{\int_{0}^{\mathrm{t}} \mathrm{t}_{\mathrm{i}}(\mathrm{r}) \cdot \mathrm{r} \cdot \mathrm{dr}} \tag{2}
\end{equation*}
$$

$\mathrm{E}_{\text {las }}$ - laser emanated e nergy;
c_{at} - light transmissivity of the atmosphere;
c_{op} - light transmissivity of the optical system;
d-diameter of the minor planet

The surface of the minor planet is matted and its each element reflects the light in accordance with the Lambert Law. Area S on the Earth receives radiated energy E_{e} :

$$
\begin{equation*}
\mathrm{E}_{\mathrm{e}}=\mathrm{E}_{\mathrm{p}} \cdot \mathrm{c}_{\mathrm{at}} \cdot \mathrm{a} \cdot \cos \mathrm{i} \cdot \mathrm{~S} / \pi \mathrm{L} \tag{3}
\end{equation*}
$$

i - mean surface normal angle turned in the direction of the Earth;
a - reflection coefficient (albedo).

As Ee is very weak, the reflected energy can be described with the number of photons per unit of area $n_{f}=E_{e} / E_{f o t}$, where $E_{f o t}-$ photon energy:

$$
\begin{equation*}
E_{f o t}=h \cdot v \tag{4}
\end{equation*}
$$

h - Planck's constant ($\mathrm{h}=6.622 \cdot 10-34 \mathrm{~J} \cdot \mathrm{~s}$);
ν - frequency of light wavelength.

$\begin{aligned} \text { laser energ. } & =10 \mathrm{~J} \\ \text { laser wavelength }= & .694 \mathrm{mkm} \\ \text { laser heem divergence } & =.5819987\end{aligned}$

	minor plamets diameter m				
	50	106	200	470	Bla
ramge km	reflected photoms on $1 \mathrm{~km}{ }^{\text {a } 2}$				
5 CbOL	1.953181E+7	$6.593346 E+7$	1.413264E +8	1.583563E+8	1.631335E+8
1010]ble	1275316	48882952	1.648337E+7	$3.53316 E+$?	3.958758E+7
2010006	80588	318826	12207348	4120841	88332911
	5052	20147	79706	3105184	1030210
B61010]	316	1263	5136	19926	76296
1600010	19	79	315	1259	4981

Table 1. Reflected photons from minor plamet.

Fig.3. Reflected laser pulses and noise from minor planet

Fig. 4. The laser arangement relative to the telescope

Fig. G. Real laser energy distribution in the far zome

L 1

Fig. 9. Spectrogaph for recieuing laser pulses

Fig. 11. Spectrograph for reflected pulses measurment

A possible arrangement of transmitting and receiving telescopes for NEO distance measurements

630 mm paraboloid mirror

Forecasted trajectories of asteroid 500 days after observation

This project can be carried out in co-operation with other astronomers of the Baltic States. Its implementation would enable scientists to improve significantly the orbital elements of the minor planets that present danger to the Earth and to forecast their motion in the future.

