French Transportable Laser Ranging Station Chronometry accuracy estimation

M.Pierron - D.Feraudy – M.Furia – F.Pierron – OCA (Grasse)

Fowards zero bias.

- Very short time intervals: (internal cal. < 30 ns)</p>
- External calibration: (100 m to 300 m)
- For satellites tracking: (400 km to 10 000 km)
- Time evolution (long-lasting effect)

How?

- With two timing systems:
- FTLRS Stanford chronometer (temperature controlled)
- Dassault Timers as a reference

FTLRS in Chania (Creta) Gavdos campaign – 04 to10 2003 -

laser maintenance

FTLRS in SanFernando (Spain) June 2004

14th Laser Workshop – San Fernando June 2004 – M.Pierron

In same Context :

Laser for start Photodiode for stop Without mutual perturbation

On same events :

Echo or noise

Measurement results

14th Laser Workshop – San Fernando June 2004 – M.Pierro

CONCLUSION

Very important to model the chronometry behavior at different ranges, and to processs the calibration value accordingly.

Stanford Chronometer can achieve *few milimeters accuracy during satellites tracking* (from 400 to 10 000 km).

Range near external calibration is easy to model. The correction to achieve for this external calibration can be tuned to 30/60 picos depending on the target's range.

Values near internal calibration range are more difficult to evaluate, except when the roundtrip time is longer than 34 nanos.
The difference between external and internal calibrations is about 50 picos (7.5 mm).