A NEW APPROACH FOR MISSION DESIGNING OF GEODETIC SATELLITES

Martín Lara

Sección de Efemérides Real Observatorio de la Armada 11110 San Fernando, SPAIN

INTRODUCTION

- Geodetic applications
 - associated measurements are frequently sampled
- Crossover points
 - the ground track of a satellite intersects itself on the surface of the earth
 - measures at the same geographic location separated in time
 - relevant in satellite Geodesy:
 - * satellite altimetry (oceanography)
 - · refinement of satellite orbits
 - * calibration of a gravity field model
- Ideal situation:
 - Repeat Ground Track Orbits

- (Cloutier 1983,..., Kozel 1995)
 - (Klokocnick & Wagner, 1994)

PROCEDURE OF MISSION DESIGN

- Experiment requirements:
 - technical limitations of the sensors
 - geographic or geodesic aspects
 - constrain the orbital parameters to a subset of limited values
- First order of J_2 design:
 - provides a rough estimate of the nominal solution
- Refinement of the orbital elements:
 - trial and error \longrightarrow good nominal set of orbital elements
 - * "good": the satellite does not drift substantially from the RGT
 - fine tuning of semimajor axis and eccentricity
 - manual iterative sequence

GEODETIG MISSIONS

- Minimize altitude variation:
 - small constant value of e
 - frozen argument of the perigee
- Brouwer's equations of motion \longrightarrow oblate Earth
 - First order of J_2 analytic approximation:
 - * no secular variation in a, e, and i
 - * regression of the node
 - * line of apsides: critical inclination
 - $\cdot \sin i > 2/\sqrt{5} \Rightarrow \text{advances}$
 - $\cdot \sin i < 2/\sqrt{5} \Rightarrow$ regresses

FIRST ORDER OF J_2 DESIGN

• Lagrange equations of motion

(secular variation)

$$\begin{aligned} \frac{\mathrm{d}a}{\mathrm{d}t} &= 0\\ \frac{\mathrm{d}e}{\mathrm{d}t} &= 0\\ \frac{\mathrm{d}i}{\mathrm{d}t} &= 0\\ \frac{\mathrm{d}\omega}{\mathrm{d}t} &= -\frac{3nJ_2}{2a^2(1-e^2)^2} \left(\frac{5}{2}\sin^2 i - 2\right)\\ \frac{\mathrm{d}\Omega}{\mathrm{d}t} &= -\frac{3nJ_2}{2a^2(1-e^2)^2} \cos i\\ \frac{\mathrm{d}M}{\mathrm{d}t} &= n - \frac{3nJ_2}{2a^2(1-e^2)^2} \left(\frac{3}{2}\sin^2 i - 2\right)\end{aligned}$$

FROZEN ORBITS

• Also consider J_3

(Dallas, 1970; Cutting et al. 1978)

• Reduced system: $(s_i \equiv \sin i)$

$$\frac{\mathrm{d}\omega}{\mathrm{d}t} = \frac{3\alpha^2 \mu^{\frac{1}{2}} (4 - 5s_i^2)}{4a^{\frac{7}{2}} (1 - e^2)^2} \left[J_2 + \frac{J_3 \alpha}{2a} \sin \omega \, \frac{s_i^2 - e\left(1 - s_i^2\right)}{e\left(1 - e^2\right)^2 s_i} \right]$$

$$\frac{\mathrm{d}e}{\mathrm{d}t} = -\frac{3\alpha^2 \mu^{\frac{1}{2}} (4 - 5s_i^2)}{4a^{\frac{7}{2}} (1 - e^2)^2} \frac{J_3 \alpha}{2a} s_i \cos \omega$$

– critical inclination

$$* \sin i = 2/\sqrt{5}$$
 \Rightarrow $(de/dt) = (d\omega/dt) = 0$

– low eccentricity:

$$* \cos \omega = 0 \quad \Rightarrow \quad (\mathrm{d}e/\mathrm{d}t) = 0$$

$$* s_i^2 - e \left(1 - s_i^2\right) = \gamma e \left(1 - e^2\right)^2 s_i \quad \Rightarrow \quad e_0 \approx s_i/\gamma \quad \Rightarrow \quad (\mathrm{d}\omega/\mathrm{d}t) = 0$$

$$\gamma \equiv -2(a/\alpha) \left(J_2/J_3\right) >> 0$$

LIBRATION OF THE PERIGEE

• Interesting property:

 $-e \approx e_0 \implies$ perigee librates

EQUILIBRIA SOLUTIONS

- Frozen orbits as previously defined are NOT equilibria:
 - $-(\mathrm{d}a/\mathrm{d}t)\neq 0$, $(\mathrm{d}i/\mathrm{d}t)\neq 0$, etc
 - orbital elements need further adjustment
- More strict definition of frozen orbits

(Coffey, Deprit & Deprit, 1994)

- equilibria solutions of an averaged form of the zonal problem

$$W = \frac{\mu}{r} - \frac{\mu}{r} \sum_{m \ge 2} \left(\frac{\alpha}{r}\right)^m J_m P_m(z/r),$$

- * average in the mean anomaly and in the node
- * not restricted to a first order averaging
- * nor also limited to J_2 and J_3

$$J_3 = \mathcal{O}(J_2^2) \sim J_4$$
 etc.

OUR ALTERNATIVE

Frozen orbits are periodic solutions

of the non-averaged (reduced) problem

- Zonal problem is axial symmetric
- \bullet Cylindrical coordinates $(\rho,\lambda,z,P,\Lambda,Z)$ decouple the problem
 - motion IN the ρ -z plane: 2-DOF
 - motion **OF** the ρ -*z* plane:

*
$$\lambda = \lambda_0 + \Lambda \int \rho(t)^{-2} dt$$

- polar orbits also periodic in 3-D $(\Lambda = 0 \Rightarrow \lambda = \lambda_0)$
- otherwise: motion of the node

Lara, Deprit & Elipe, Celest. Mech. 1995 (9 zonal harmonics)

- Numerical integration
- 2-D differential corrections algorithm
- Poincaré continuation method: *z*-component of the angular momentum

REPEATING GROUND-TRACK ORBITS

- Ground track:
 - path followed by the subsatellite points on the surface of the Earth
- Repeat ground track condition:

$$N\left(\dot{\theta}_E - \dot{\Omega}\right)T_{\nu} = 2\pi D$$

(period in the ρ -z plane) (assumed constant in the *z*-direction) (forced by the equatorial bulge) (repeat cycle) (cycle length)

length of the nodal period $-T_{\nu}$ $-\dot{\theta}_E$ Earth rotation rate

- $-\dot{\Omega}$ motion of the line of nodes
- number of nodal days -D
- number of nodal periods -N
- Earth fixed (rotating) frame

EXAMPLE OF REPEAT GROUND-TRACK ORBIT

3 nodal periods in 1 nodal day (Molnya-type repeat ground track orbit)

FAMILIES OF REPEAT GROUND-TRACK (3D-PERIODIC) ORBITS

Lara, J. of Astronautical Sciences 1999

- Numerical integration
- 3-D differential corrections algorithm
- Poincaré continuation method. Parameter: Jacobian constant

MISSION DESIGN: GEODETIC SATELLITES

• Jason

- Repeat cycle 10 days; length 127 periods
- 2-line orbital elements $i = 66.0444^{\circ}$, e = 0.0007776
- Family $S_{\rm p}$ of 10/127 RGT 3-D periodic orbits in a rotating frame

- minimum in eccentricity $i \in [65.86^\circ, 66.13^\circ] \Rightarrow e = 0.0006$

HOW TO FIND (PERIODIC) RGT ORBITS

• Zonal problem is biparametric

$$\mathcal{H} \equiv \frac{1}{2} \left(P^2 + \frac{\Lambda^2}{\rho^2} + Z^2 \right) - \frac{\mu}{r} + \frac{\mu}{r} \sum_{m \ge 2} \left(\frac{\alpha}{r} \right)^m J_m P_m(z/r)$$
$$\mathcal{H}(\rho, z, P, Z, \Lambda) = E$$

• Searching in the E- Λ plane we find 2-D periodic orbits that are RGT orbits

- Repetition cycle related with the semimajor axis $\Rightarrow E$

$$\dot{\theta}_E/D = n/N, \qquad n = \sqrt{\mu/a^3},$$

– Node rate $\dot{\Omega}$ related with the inclination $\Rightarrow \Lambda$

$$\dot{\Omega} = \frac{\lambda(T) - \lambda_0}{T} = \frac{\Lambda}{T} \int_0^T \frac{dt}{\rho(t)^2}$$

PRACTICAL PROCEDURE

- 1. First order of J_2 analytic approximation
 - approximate initial conditions in cylindrical coordinates
 - 2-D periodic (frozen) orbit $\approx N/D \text{ RGT}$
- 2. Continuation for variations of E until exactly $N/D~{\rm RGT}$
- 3. If necessary, continuation for variations of Λ until
 - sun synchronous
 - desired inclination (almost circular orbits)
 - desired eccentricity (critically inclined orbits)
- 4. Totally automated: SADSaM
 - a Software Assistant for Designing SAtellite Mission
 - Input: Repeat cycle (N, D), gravitational model, i (or e, or sun synch.)
 - Output: a, e, i, ω, Ω (averaged) —AND— $(x, y, z, \dot{x}, \dot{y}, \dot{z})$

14th International Laser Ranging Workshop

San Fernando, Cádiz, 7–11 June 2004

ENVISAT

• Sun synchronous; repeat cycle 35 days; length 501 orbits;

- SADSaM: $a = 7159.49, e = 0.00114, i = 98.5446^{\circ}, \omega = 90^{\circ}$

- Real: $a = 7159.49, e = 0.00115, i = 98.5425^{\circ}, \omega = 91.9^{\circ}$

CONCLUSIONS

- RGT configurations are highly desirable for missions of geodetic satellites
- RGT orbits are 3D periodic solutions (gravitation only) in a rotating frame
- Classical approach for mission designing is based on trial and error
- Contrary, SADSaM do the job in a totally automated way