A NEW APPROACH FOR MISSION DESIGNING OF GEODETIC SATELLITES

Martín Lara

Sección de Efemérides
Real Observatorio de la Armada
11110 San Fernando, SPAIN

INTRODUCTION

- Geodetic applications
- associated measurements are frequently sampled
- Crossover points
- the ground track of a satellite intersects itself on the surface of the earth
- measures at the same geographic location separated in time
- relevant in satellite Geodesy:
* satellite altimetry (oceanography)
- refinement of satellite orbits (Cloutier 1983,..., Kozel 1995)
* calibration of a gravity field model (Klokocnick \& Wagner, 1994)
- Ideal situation:
- Repeat Ground Track Orbits

PROCEDURE OF MISSION DESIGN

- Experiment requirements:
- technical limitations of the sensors
- geographic or geodesic aspects
- constrain the orbital parameters to a subset of limited values
- First order of J_{2} design:
- provides a rough estimate of the nominal solution
- Refinement of the orbital elements:
- trial and error \longrightarrow good nominal set of orbital elements
* "good": the satellite does not drift substantially from the RGT
- fine tuning of semimajor axis and eccentricity
- manual iterative sequence

GEODETIG MISSIONS

- Minimize altitude variation:
- small constant value of e
- frozen argument of the perigee
- Brouwer's equations of motion \longrightarrow oblate Earth
- First order of J_{2} analytic approximation:
* no secular variation in a, e, and i
* regression of the node
* line of apsides: critical inclination
- $\sin i>2 / \sqrt{5} \Rightarrow$ advances
- $\sin i<2 / \sqrt{5} \quad \Rightarrow \quad$ regresses

FIRST ORDER OF J_{2} DESIGN

- Lagrange equations of motion
(secular variation)

$$
\begin{aligned}
\frac{\mathrm{d} a}{\mathrm{~d} t} & =0 \\
\frac{\mathrm{~d} e}{\mathrm{~d} t} & =0 \\
\frac{\mathrm{~d} i}{\mathrm{~d} t} & =0 \\
\frac{\mathrm{~d} \omega}{\mathrm{~d} t} & =-\frac{3 n J_{2}}{2 a^{2}\left(1-e^{2}\right)^{2}}\left(\frac{5}{2} \sin ^{2} i-2\right) \\
\frac{\mathrm{d} \Omega}{\mathrm{~d} t} & =-\frac{3 n J_{2}}{2 a^{2}\left(1-e^{2}\right)^{2}} \cos i \\
\frac{\mathrm{~d} M}{\mathrm{~d} t} & =n-\frac{3 n J_{2}}{2 a^{2}\left(1-e^{2}\right)^{2}}\left(\frac{3}{2} \sin ^{2} i-2\right)
\end{aligned}
$$

FROZEN ORBITS

- Also consider J_{3}
(Dallas, 1970; Cutting et al. 1978)
- Reduced system: $\quad\left(s_{i} \equiv \sin i\right)$

$$
\begin{aligned}
\frac{\mathrm{d} \omega}{\mathrm{~d} t} & =\frac{3 \alpha^{2} \mu^{\frac{1}{2}}\left(4-5 s_{i}^{2}\right)}{4 a^{\frac{7}{2}}\left(1-e^{2}\right)^{2}}\left[J_{2}+\frac{J_{3} \alpha}{2 a} \sin \omega \frac{s_{i}^{2}-e\left(1-s_{i}^{2}\right)}{e\left(1-e^{2}\right)^{2} s_{i}}\right] \\
\frac{\mathrm{d} e}{\mathrm{~d} t} & =-\frac{3 \alpha^{2} \mu^{\frac{1}{2}}\left(4-5 s_{i}^{2}\right)}{4 a^{\frac{7}{2}}\left(1-e^{2}\right)^{2}} \frac{J_{3} \alpha}{2 a} s_{i} \cos \omega
\end{aligned}
$$

- critical inclination

$$
* \sin i=2 / \sqrt{5} \Rightarrow(\mathrm{~d} e / \mathrm{d} t)=(\mathrm{d} \omega / \mathrm{d} t)=0
$$

- low eccentricity:

$$
\begin{aligned}
& * \cos \omega=0 \quad \Rightarrow \quad(\mathrm{~d} e / \mathrm{d} t)=0 \\
& * s_{i}^{2}-e\left(1-s_{i}^{2}\right)=\gamma e\left(1-e^{2}\right)^{2} s_{i} \quad \Rightarrow \quad e_{0} \approx s_{i} / \gamma \quad \Rightarrow \quad(\mathrm{d} \omega / \mathrm{d} t)=0 \\
& \\
& \gamma \equiv-2(a / \alpha)\left(J_{2} / J_{3}\right) \gg 0
\end{aligned}
$$

LIBRATION OF THE PERIGEE

- Interesting property:
$-e \approx e_{0} \quad \Rightarrow \quad$ perigee librates

EQUILIBRIA SOLUTIONS

- Frozen orbits as previously defined are NOT equilibria:
$-(\mathrm{d} a / \mathrm{d} t) \neq 0, \quad(\mathrm{~d} i / \mathrm{d} t) \neq 0, \quad$ etc
- orbital elements need further adjustment
- More strict definition of frozen orbits
- equilibria solutions of an averaged form of the zonal problem

$$
W=\frac{\mu}{r}-\frac{\mu}{r} \sum_{m \geq 2}\left(\frac{\alpha}{r}\right)^{m} J_{m} P_{m}(z / r),
$$

* average in the mean anomaly and in the node
* not restricted to a first order averaging
* nor also limited to J_{2} and J_{3}

$$
\cdot J_{3}=\mathcal{O}\left(J_{2}^{2}\right) \sim J_{4} \text { etc. }
$$

OUR ALTERNATIVE

Frozen orbits are periodic solutions
of the non-averaged (reduced) problem

- Zonal problem is axial symmetric
- Cylindrical coordinates $(\rho, \lambda, z, P, \Lambda, Z)$ decouple the problem
- motion IN the $\rho-z$ plane: 2-DOF
- motion OF the $\rho-z$ plane:
$* \lambda=\lambda_{0}+\Lambda \int \rho(t)^{-2} d t$
- polar orbits also periodic in 3-D $\quad\left(\Lambda=0 \Rightarrow \lambda=\lambda_{0}\right)$
- otherwise: motion of the node
* $\rho(T)=\rho_{0}$
* $z(T)=z_{0}$
* $\dot{\Omega}=\left(\lambda(T)-\lambda_{0}\right) / T$

EXAMPLE: 2-D PERIODIC SOLUTIONS

$$
a=10559.26 \mathrm{~km}, \quad e=0.3463, \quad i=116.556^{\circ}, \quad g=270^{\circ}
$$

(Ellipso Borealis-type)

FAMILIES OF (FROZEN) 2D-PERIODIC ORBITS

Lara, Deprit \& Elipe, Celest. Mech. 1995 (9 zonal harmonics)

- Numerical integration
- 2-D differential corrections algorithm
- Poincaré continuation method: z-component of the angular momentum

REPEATING GROUND-TRACK ORBITS

- Ground track:
- path followed by the subsatellite points on the surface of the Earth
- Repeat ground track condition:

$$
N\left(\dot{\theta}_{E}-\dot{\Omega}\right) T_{\nu}=2 \pi D
$$

- $T_{\nu} \quad$ length of the nodal period
(period in the $\rho-z$ plane)
- $\dot{\theta}_{E}$ Earth rotation rate (assumed constant in the z-direction)
$-\dot{\Omega} \quad$ motion of the line of nodes (forced by the equatorial bulge)
- D number of nodal days (repeat cycle)
- N number of nodal periods
- Earth fixed (rotating) frame

EXAMPLE OF REPEAT GROUND-TRACK ORBIT

3 nodal periods in 1 nodal day
(Molnya-type repeat ground track orbit)

FAMILIES OF REPEAT GROUND-TRACK (3D-PERIODIC) ORBITS

Lara, J. of Astronautical Sciences 1999

- Numerical integration
- 3-D differential corrections algorithm
- Poincaré continuation method. Parameter: Jacobian constant

MISSION DESIGN: GEODETIC SATELLITES

- Jason
- Repeat cycle 10 days; length 127 periods
- 2-line orbital elements $i=66.0444^{\circ}, \quad e=0.0007776$
- Family S_{p} of 10/127 RGT 3-D periodic orbits in a rotating frame
- minimum in eccentricity $i \in\left[65.86^{\circ}, 66.13^{\circ}\right] \Rightarrow \quad e=0.0006$

HOW TO FIND (PERIODIC) RGT ORBITS

- Zonal problem is biparametric

$$
\begin{aligned}
& \mathcal{H} \equiv \frac{1}{2}\left(P^{2}+\frac{\Lambda^{2}}{\rho^{2}}+Z^{2}\right)-\frac{\mu}{r}+\frac{\mu}{r} \sum_{m \geq 2}\left(\frac{\alpha}{r}\right)^{m} J_{m} P_{m}(z / r) \\
& -\mathcal{H}(\rho, z, P, Z, \Lambda)=E
\end{aligned}
$$

- Searching in the $E-\Lambda$ plane we find 2-D periodic orbits that are RGT orbits
- Repetition cycle related with the semimajor axis $\Rightarrow E$

$$
\dot{\theta}_{E} / D=n / N, \quad n=\sqrt{\mu / a^{3}}
$$

- Node rate $\dot{\Omega}$ related with the inclination $\Rightarrow \Lambda$

$$
\dot{\Omega}=\frac{\lambda(T)-\lambda_{0}}{T}=\frac{\Lambda}{T} \int_{0}^{T} \frac{d t}{\rho(t)^{2}}
$$

PRACTICAL PROCEDURE

1. First order of J_{2} analytic approximation

- approximate initial conditions in cylindrical coordinates
- 2-D periodic (frozen) orbit $\approx N / D$ RGT

2. Continuation for variations of E until exactly N / D RGT
3. If necessary, continuation for variations of Λ until

- sun synchronous
- desired inclination (almost circular orbits)
- desired eccentricity (critically inclined orbits)

4. Totally automated: SADSaM

- a Software Assistant for Designing SAtellite Mission
- Input: Repeat cycle (N, D), gravitational model, i (or e, or sun synch.)
- Output: a, e, i, ω, Ω (averaged) -AND— $(x, y, z, \dot{x}, \dot{y}, \dot{z})$

ENVISAT

- Sun synchronous; repeat cycle 35 days; length 501 orbits;
- SADSaM: $\quad a=7159.49, e=0.00114, i=98.5446^{\circ}, \omega=90^{\circ}$
- Real: $\quad a=7159.49, e=0.00115, i=98.5425^{\circ}, \omega=91.9^{\circ}$
- Propagation 2500 days, GEMT-1 36×36, Moon, Sun
(Itziar Barat, ESTEC)

- Left: real.

Right: SADSaM

- Abscissas $e \cos \omega$, ordinates $e \sin \omega$

CONCLUSIONS

- RGT configurations are highly desirable for missions of geodetic satellites
- RGT orbits are 3D periodic solutions (gravitation only) in a rotating frame
- Classical approach for mission designing is based on trial and error
- Contrary, SADSaM do the job in a totally automated way

